Proc. of the IEEE Symposium on Field-Programmable Custom Computing Machines, Napa, USA, 2002

FPGA-based Template Matching using Distance Transforms

S. Hezel, A. Kugel and R. Manner
Department of Computer Science V

University of Mannheim
B6, 23-29, 68131 Mannheim, Germany

{hezel kugel,maenner}@ti.uni-mannheim.de

Abstract

This paper presents a high-performance FPGA so-
lution to generic shape-based object detection in im-
ages. The underlying detection method involves repre-
senting the target object by binary templates contain-
ing positional and directional edge information. A par-
ticular scene image is preprocessed by edge segmenta-
tion, edge cleaning and distance transforms. Matching
involves correlating the templates with the distance-
transformed scene image and determining the loca-
tions where the mismatch is below a certain user-
defined threshold. Although successful in the past, a
significant drawback of these matching methods has
been their large computational cost when implemented
on a sequential general-purpose processor.

In this paper, we present a step by step implemen-
tation of the components of such object detection sys-
tems, taking advantage of the data and logical paral-
lelism opportunities offered by an FPGA architecture.
The realization of a pipelined calculation of the pre-
processing and correlation on FPGA is presented in
detail.

1 Introduction

Object detection is one of the central tasks of im-
age understanding. Template-based matching meth-
ods using distance transforms have proven to be quite
successful in this regard, because of their robustness
to missing or partially incorrect data (i.e. occlusion)
and their non-reliance on high-level feature extrac-
tion which is notoriously error-prone [3, 1, 2]. In
these methods, target objects are represented by bi-
nary templates containing positional (and possibly
directional) edge information. On-line, a particular
scene image is preprocessed by edge segmentation,
edge cleaning and distance transforms. Matching then
involves correlating the templates with the distance-

D.M. Gavrila
Image Understanding Systems
DaimlerChrysler Research
Ulm 89081, Germany
dariu.gavrila@DaimlerChrysler.com

transformed scene image and determining the loca-
tions where the mismatch is below a certain user-
defined threshold. These image locations are consid-
ered to contain the “detected” objects.

Such matching methods are very generic and ap-
plicable across a large variety of domains (i.e. auto-
matic target recognition in the military domain, visual
inspection in the industrial domain, object detection
onboard “intelligent” vehicles). One large drawback is
their large computational cost when implemented on
a general-purpose sequential processor. Main bottle-
necks are the computation of the distance transform
and the correlation.

In this paper, we present a step by step implemen-
tation of the components of such object detection sys-
tems, taking advantage of the data and logical par-
allelism opportunities offered by an FPGA architec-
ture. Integer operations are frequently used in many
image processing algorithms, such as FIRfilters for
edge detection, and often they need only low preci-
sion arithmetics. The employed simple computational
patterns can be realized with highly parallel pipelines
as described e.g. in [9]. Applied to distance trans-
forms and other morphological operations which imply
mostly the evaluation of boolean operations or com-
perators on local stucturing elements, high speed-up
can be achieved compared to general purpose sequen-
tial machines like PCs [4]. This holds true even though
the clock frequencies of typical FPGA designs (50 ..
200 MHz) are much lower than those of state of the art
CPUs (> 1 GHz). The presented work profits from the
heavy use of parallel and pipelined operations, thus en-
abling a significant speed-up for the object-detection
application.

Methods for single and multiple template matching
on FPGAs are described in [6, 7]. In both cases a
binary image is shifted over a binary template hard-
wired into FPGA, and the correlation is being cal-
culated by adder trees. In our case the matching is
done for many templates concurrently using several

dgavril
Proc. of the IEEE Symposium on Field-Programmable Custom Computing Machines, Napa, USA, 2002

distance transformed images. The huge pipeline uti-
lized for the subsequent correlation is described as
are techniques for the reduction of FPGA resource
requirements and optimized handling of the data of
several distance transformed images. For implementa-
tion, simulation and synthesis we used CHDL (a C++
based Hardware Description Language), which is be-
ing developed at the University of Mannheim since
1995 [10]. This tool enables a very high level of in-
tegration for HS/SW co-design, which is a big advan-
tage for this kind of distributed application. All our
FPGA implementations target PCI based FPGA co-
processors. The initial tests have been carried out
on the commercial boards pEnable-I and its successor
puEnable-II [8]. The pEnable-I series of boards is based
on the Xilinx XC4000 family of FPGAs supported by
a single memory bank. The pyEnable-II series uses an
XCV1000 FPGA with 2 banks of memory.

For the final implementation we are using the
RACE-1 co-processor developed at the University
of Mannheim [11]. Primarily, it comprises a XIL-
INX Virtex-2 FPGA (XC2V3000) and four 36 bit
wide 133 MHz SRAM banks. Moreover it supports
64bit/66MHz PCI and has multiple connectors for ex-
ternal interfaces, e.g. to digital cameras.

The outline of the paper is as follows: In section 2
we introduce the basics of the agorithm as described
in [1]. In section 3 we describe the mapping of the
preprocessing onto FPGA, resulting in building two
large pipelines. In section 4 a pipelined approach is
presented to calculate the correlations of multiple tem-
plates in parallel. Some issues concerning optimal use
of FPGA resources are discussed. Section 5 presents
possible strategies how to combine the pipelines of pre-
processing and template matching and how to increase
the number of templates. We finish with results and
conclusion.

2 The Matching Algorithm
2.1 Matching with Distance Transforms

A distance transform (DT) converts a binary im-
age consisting of feature and non-feature pixels into
an image where each pixel value denotes the distance
to the nearest feature pixel [3, 1]. Figure 1 illustrates
a Euclidean Distance Tranform (EDT). More often,
DTs such as the chamfer-2-3 transform are used, pro-
viding good integer approximations of true Euclidean
distance at low computational cost. These DTs are
computed in raster scan fashion; they approximate
global distances by propagating distances locally using

a mask of fixed size and shape, in a manner indepen-
dent of the feature locations in the image.

423628222022283642
362822141014222836
282214100010142228
221410001000101422
141000101410001014
100010101010100010
1.00000000000000010
141010101010101014
222020202020202022

Figure 1: A binary pattern and its Euclidean Distance
Transform

Matching with DT is illustrated schematically in
Figure 2. It involves two binary images, a segmented
template T and a segmented image I, which we will
call “feature template” and “feature image”. The “on”
pixels denote the presence of a feature and the “off”
pixels the absence of a feature in these binary images.
What the actual features are, does not matter for the
matching method. Typically, one uses edge-points,
and we will do so throughout this paper. The feature
template is given off-line for a particular application,
and the feature image is derived from the image of
interest by feature extraction.

Raw
Image

l feature extraction

Feature Festure
Image Template
(binary) N (binary)
DT l I pT
N v

correlation ___________ N

DT 1 DT !

Image ' Template |

Figure 2: Matching using a DT

Matching T and I involves computing the distance
transform of the feature image I. The template T
is transformed (e.g. translated) and positioned over
the resulting DT image of I; the matching measure
D(T,I) is determined by the pixel values of the DT
image which lie under the “on” pixels of the template.
These pixel values form a distribution of distances of
the template features to the nearest features in the
image. The lower these distances are, the better the
match between image and template at this location.

A number of matching measures can be defined on
the distance distribution. One possibility is to use the
average distance to the nearest feature. This is the
chamfer distance

Dchamfer T I

|T| Zdl (1)

teT

where |T'| denotes the number of features in 7' and
dr(t) denotes the distance between feature ¢ in T' and
the closest feature in I. The chamfer distance thus
consists of a correlation between T and the distance
image of I, followed by a division. In applications, a
template is considered as matched at locations where
the distance measure D(T, I) is below a user-supplied
threshold 6

D(T,I)< 8 (2)

Figure 3 illustrates the matching scheme of Figure
2 for the typical case of edge features. Figure 3a-b
shows a “toy” image and template. Figure 3c-d shows
the edge detection and DT transformation of the edge
image. The distances in the DT image are intensity-
coded; lighter colors correspond to increasing distance
values.

() (d)

Figure 3: (a) original image (b) template (c) edge im-
age (d) DT image

The advantage of matching a template (Figure 3b)
with the DT image (Figure 3d) rather than with the
edge image (Figure 3c) is that the resulting similar-
ity measure is smoother than a function of the feature
positions, allowing tolerance between a template and
an object of interest in the image. Matching with the

unsegmented (gradient) image on the other hand typ-
ically provides strong peak responses for “ideal” tem-
plates, but rapidly declining off-peak responses with
slightly increasing template-image dissimilarity.

For real images, edge segmentation also introduces
spurious edges. In order to reduce the significant im-
pact isolated edge points can have on subsequent dis-
tance transform computation, an additional filtering
step is typically performed; it involves the removal of
all connected edge segments of size below a certain
user-supplied threshold.

2.2 Extension to Multiple Feature-Types:
Edge Orientation

No distinction has so far been made with regard to
the type of (edge) features. All features would appear
in one feature image (or template) and, subsequently,
in one DT image. If there are several feature types,
and under consideration of the match of a template at
a particular location of the DT image, it is possible
that the DT image entries reflect shortest distances to
features of non-matching type. The similarity measure
would be too optimistic, increasing the number of false
positives one can expect from matching.

A simple way to increase matching discrimination
by distinguishing multiple feature types is to use sep-
arate feature images and DT images for each type.
Thus having M distinct feature types results in M
feature images and M DT images. Similarly, the “un-
typed” feature template is multiplexed in M “typed”
feature templates. Matching proceeds as before, but
now the match measure between image and template
is the sum of the match measures between template
and DT image of the same type.

Considering the case of edge points as features, we
use edge orientation as feature type by partitioning
the unit circle in M bins

(Lypem 57
Thus a template edge point with edge orientation v is
assigned to the typed template with index
2 m) (@
T

2r]li=0,..M—1} (3)

We still have to account for measurement error in
the edge orientation and the tolerance we will allow
between the edge orientation of template and image
points during matching. Let the absolute measure-
ment error in edge orientation of the template and im-
age points be A¢p and A¢;, respectively. Let the al-
lowed tolerance on the edge orientation during match-
ing be A¢;o. In order to account properly for these

quantities, a template edge point is assigned to a range
of typed templates, namely those with indices

- A A
By, W2y)
mapped cyclically over the interval 0, ..., M — 1, with
A¢ = Adr + Adr + Adyor (6)

For applications where there is no sign information
associated with the edge orientation, a template edge
point is also assigned to the typed templates one ob-
tains by substituting ¢ + 7 for ¢ in Equation (5).

2.3 Matching algorithm components

In summary, our matching algorithm has the fol-
lowing logical components. For the preprocessing of
the scene image:

1. edge detection
2. edge noise removal

3. computation of distance transform
For the actual matching:
4. correlation between template and DT image

We now proceed with the description of the FPGA
implementation of the above components in the fol-
lowing sections.

3 Architecture of Preprocessing

The preprocessing basically consists of edge detec-
tion, morphological clean and distance transforma-
tion. Additionally, there are some data-formatting
steps in order to accelerate memory access. All
these operations are well suited for a straightforward
pipelined implementation on an FPGA. For the cal-
culation of the distance transformation we use a se-
quential approach utilising a forward and a backward
step. After calculating the forward tansformation the
intermediate result image must be stored. Hence the
total preprocessing is composed of two parts. First
the edge detection, morphological clean and forward
distance transformation takes place in one pipeline as
shown in Fig. 6. Backward transformation and data
formatting are performed next. The data flow is dis-
played in Fig. 7.

In the remainder of this section we will describe the
hardware implementation of all the modules specific
to Sobel and distance transformation. A summary of
FPGA resource utilisation and pipeline depths for all
preprocessing modules is given in Tab. 1.

3.1 Edge Detection

To determine the edges we use the Sobel operators
for x and y direction. They belong to the class of
linear shift invariant (LSI) operations. The 3 x 3 con-
volution mask of the Sobel operator uses antisymmet-
ric coefficients, as shown at the top of Fig. 4. These
neighbourhood transformations are very often calcu-
lated by shifting the mask line by line over the image.
Our implementation in hardware is done the other way
round: the mask is fixed and the image is transformed
under the mask line by line. For more details on im-
plementing (LSI) filters on FPGAs see e.g. [9].

Two complete lines from the original image are
copied to internal FPGA Block RAM and the cur-
rently processed 3 x 3 region is kept in shift register
arrays (SRA) for fully parallel access. The registers
and Block RAM are used for both x and y Sobel oper-
ators. The calculations are done in parallel with two
pipelined arithmetic units (AUs), as shown in Fig. 4.
Each AU is able to process the 3 x 3 pixels in one cycle.
This allows to feed a new pixel into the shift register
array (SRA) at every clock cycle.

01])
Sobel X: é—+2 02 Sobel Y: é— olo]o
101 T2
D, [:
> t. RAM
B B B m
O
_g [] D__
B
=

Tz
|

(%]

Figure 4: Hardware implementation of Sobel operator.

For the calculation of the border pixels there is no
need to apply techniques such as zero extension or
extrapolation. Instead, the calculation is continued
over the border, which can be seen as a periodic ex-
tension.

To find the features in a binary image the sum of
Sz and Sy is first determined, then the threshold is
checked. Only if the sum is above the threshold, the
pixel is considered to be a feature pixel.

Parallel to the threshold evaluation a discrete ori-
entation value is derived and 1 of 8 directions assigned
to the pixel, according to the corresponding octant of
the pixel position. The result values are clipped to 4
bit precision.

3.2 Morphological Clean

The aim of the clean operation is the elimination
of noise in the binary edge image. Three or less con-
nected pixels, the “isolated” pixels, are eliminated. In
software this morphological operation is implemented
in a hierarchical way which involves purely random
memory access.

Since this strategy is not well suited for an FPGA
implementation, the clean module is built as a pipeline
with a logic unit (LU) with parallel access to all rel-
evant pixels. Again, the pixels are stored in a SRA
of size 7 x 5. The LU detects in parallel all possible
combinations of three or less connected feature pixels.

The result of the clean operation is used to mask
invalid pixels in all 8 directional Sobel images prior to
initializing the DT data structure in external RAM.

3.3 Distance Transformation

To approximate the Euclidian distances we use the
sequential chamfer 2-3 metric, as described in [3] and
Section 2.3. A non-symmetric forward and backward
mask, as illustrated in Fig. 5, is hardwired into the
FPGA and the image is translated under this mask,
first in forward, then in backward direction. All 8
directions are processed in parallel. For the calculation
of the distance value we use 5 bit integers. The results
are clipped to 4 bits, allowing to combine all directions
of a pixel into a single memory word suitable for the
available hardware.

The forward and backward masks are similar, so
that we only need a single hardware realisation. In
both cases the data at the current position has to be
compared to the minimum of the three corresponding
pixels in the preceeding line. This intermediate re-
sult has to be compared with the neighbouring pixel
which is already stored in the register, as shown on the
bottom right of Fig. 5. The result is written to the
internal Block RAM and is also stored in the register
at the bottom right after being incremented by 2.

Upon initialisation and in the border region a mul-
tiplexer supplies a save value to the DT output.

Backwards
—| 0 [+2
min [+3[+2]+3

Forwards
+3[+2[+3]
. DI
min |+2| 0 j¢——

DI

min

min

Mux
Oxla

Init (0]

Figure 5: Pipeline of disctance transformation.

The alternative parallel approach [3] has a 16-fold
resource requirement and is therefore not considered
in the present work.

3.4 Control and Resources

The pipelined structure of the two preprocessing
sections is depicted in Fig. 6 and Fig. 7. In the first
phase, data is read on every clock cycle from the left
RAM and entered into the pipeline. After the latency
of the pipeline, given in Tab. 1, the result is written
to the right RAM, again in every cycle. This process
includes the transformation of a single input image
into 8 feature images. During the second phase, data
are read from the right RAM and written to the left
RAM. All 8 orientations are processed in parallel.

Apart from the basic control of the preprocessing
steps care has to be taken of initialisation of the var-
ious subsystems and of synchronisation with external
modules like RAM and host interface.

The resource utilisation of the two pipelines for im-
ages of size 5122 is given in Tab. 1. The size of the
image only affects the use of internal Block RAM. The
number of DT images and the precision are fixed and
don’t have to be considered.

Sobel X
(Sx)

Sobel Y]
(Sy)

Direction

Demul|
tiplex

Operation | Slices Blk Ram Delay
Sobel ~150 1 2xW+6
Abs <8 1
Threshold <8 1
Direction <25 2
Clean ~270 1 Ax W4T
Demult. <20 2
8 DT ~8x110 2 1xW+2
Control ~340 -
B | ~1700 1 | xwe2t

Figure 6: Pipeline 1 of preprocessing with forward
distance transformation.

RAM

Py

Figure 7: Pipeline 2 of preprocessing with backward
distance transformation.

4 Architecture of Template Matching

In this section we describe in detail a pipelined,
parallel approach for calculating the correlation for
multiple templates. In some ways our pipelined ap-
proach is similar to the calculation of Sobel. The rel-
evant data with regard to all multiple templates are
stored in shift register arrays (SRAs) and all correla-
tions of all templates are carried out simultaneously by
pipelined adder trees. Depending on the number, size
and shape of the templates varying amounts of FPGA
resources are used. Their number could be reduced
by optimization of adder trees or different calculation
strategies as described in Section 4.3 and 5. With re-
gard to the usage of FPGA resources it is important
that the extension of the templates is not too large
compared to the image size. It is advantageous if the
templates are uniform, compact or concave. These
attributes apply to templates corresponding to traf-
fic signs. For the moment we restrict our calculations
to 12 circles and 12 triangles with radii from 7 to 18
pixels. Paragraph 4.2 describes in detail the optimal
handling of data of 8 DT images, so that no modules
are in wait state.

Table 1: Resource requirements and latencies for pre-
processing on XC2V3000 XILINX. W is the width of
the image using 8-bit input data.

4.1 Parallel Pipelined Matching

To calculate the correlation of one template the fol-
lowing summations must be performed, see Equ. 1.
First, the pixels of one DT image corresponding the
template points have to be added up. Second, this has
to be done 8 times, once for every DT image. Third,
the sum of these 8 intermediate sums has to be calcu-
lated. For N templates this has to be done N times.

In our FPGA design all correlations of all templates
are carried out simultaneously. This has the following
effects: For each DT image we generate one shift reg-
ister array (SRA) to have access to those pixels corre-
sponding not only one template but also all templates,
as seen in Fig. 8. Since the correlations are calculated
on 8 DT images, we generate 8 of these SRAs as shown
in Fig. 9. To each template one adder tree with access
to all relevant SRAs is assigned.

Normally, each of the 8 SRAs will differ in exten-
sion depending on the shape of all templates. Due to
this, the relative locations of the SRAs also change, as
shown in Fig. 9. This implies that the input data of
the SRAs must be read by different addresses of the
DT images. The utilization of these SRAs is high if
the templates have the above mentioned attributes.

The chamfer measure for each template is calcu-
lated with an arithmetic logic unit (ALU) consting of
pipelined adder trees and threshold modules as indi-
cated in Fig. 9 and Fig. 10. The ALU has paral-
lel access to all DT pixels relevant for all templates.
Because of this it could be checked in parallel if the
chamfer measure is below all thresholds, see Equ. 1.
No intermediate values are calculated and to be stored
in the extern RAM. The adder tree we use has the
special feature that registers after every x-th stage of
adders can be included.

Figure 8: The SRAs are generated generically for each
DT image depending on the shape of multiple tem-
plates. This is shown for two fragments of lines as
suggested in the bold registers. These registers of each
template are connected with the inputs of adder trees.

The calculation strategy is similar to Sobel: the DT
images are translated line by line under the hardwired
templates. If one output of the thresholds is high, the
data of the address counters and all threshold data
will be stored in internal Block RAM as shown in Fig.
10.

4.2 Control

As described above we build one pipeline consisting
of 8 SRAs and the ALU. The SRAs can be filled with
DT pixels in a way that each SRA receives one input
data per clock cycle. This is done by storing the 8 DT
images in different sections in the extern RAM and 8
neighboured DT pixels in every address as described
in Section 3.4. We re-sort the data after reading as we
sorted the data before storing after DT. So in every
8-th clock cycle each sorting module is loaded with 8
x 4 bit DT pixels. Thus the pipeline works highly
efficiently and there is no unused logic.

To fill the pipeline is somewhat difficult. Because
of the different extensions of SRAs, we need differ-
ent numbers of cycles to fill them with pixels. First,
we start to fill the SRA with the biggest extension.
Then the next SRAs are filled simultaneously in time,
each one shifted by one cycle. When all 8 SRAs are
filled only correct DT pixels are in the pipeline. Since
we stored 8 neighbouring DT pixels in one address it

extension of all SRAs in x-direction

uonooIIp-£ Ul SYYS [[& JO UOISUIIXd

uond2IIP-A Ul / YYS JO UOISUI)XD

extension of SRA 7 in x-direction

Figure 9: Generation of 8 shift register arrays (SRAs)
at the example of 2 circle templates. The different
extensions and locations of all 8 SRAs is shown.

-
—¢—|N' 4 Adlethresholdl}
No*4

Add 2 (threshold 2

RAM

2 4

Iresort l|-/—<| SRA 1 L
,,,,,, 32 4

|

=

2 4
Iresort 8|-/—

*,
N Add Tchreshold T}J_

Figure 10: Data flow of template matching. The con-
nections between SRAs and adder trees is optional.

could happen that the “real” address of one pixel is
not a multiple of 8. This additional offset is compen-
sated with a few shift registers inserted between the
re-sort and SRAs modules.

Using this strategy we can guarantee that all SRAs
are loaded in every clock cycle with one input pixel.
This means that the pipeline is never stalled and all
registers can always be clock enabled (CE). Thus high
fan out of CE signals can be prevented saving a no-
ticeable amount of routing network.

While the pipeline is filled with data no results of
possible matched templates are stored. At the border
no special processing is done. The calculation is con-
tiued over the border and any results that occur are
discarded. The subsequent verification of these de-
tection results is conducted on the PC. From the ad-

dresses the x and y coordinates and from the threshold
data the types of templates will be determined.

4.3 Optimizations

First, it is possible to remove the unused registers
from the SRA and to replace them by internal “dis-
tributed” RAM. This is only useful if they are neigh-
boured and connected.

Second, resources of adders could be saved if the
commonalities of topological similar templates are
taken into account, which is described by means of ex-
amples in [7]. Calculating the correlation for one tem-
plate will no longer be done by one adder tree alone.
Parts of adder trees are shared.

Figure 11: Above, templates concerning to central
points are given. The translated templates are shown
below. The topological similar triangles merged best.

Often the representation of templates is given with
regard to the central points as shown at the top of
Fig. 11. No overlapping will then happen within the
template classes of circles and triangles. To increase
the amount of templates with overlap, we propose
translations as indicated at the bottom in Fig. 11. Af-
ter translation the triangles merge best and the gain of
FPGA resources for adders is high. But it has to be
taken into account that the translation of templates
also effects the extension of the SRAs. For the tri-
angles, the extensions of the SRAs corresponding to
line ¢ will shrink, to line b, they will stay the same
and to line a, they will swell. The way the circles are
translated as shown in Fig. 11 only little overlap is
gained. The extensions of the upper four SRAs will
increase and the lower will decrease. Supposedly there
is no overall gain of resources or even more resources

may be needed. Gain of overlap will also be reached
by putting the templates of different classes over each
other. It is unclear how to do this in an exact way.
We think that it is necessary to put all this into a
systematic approach and to formulate an integer pro-
gramming problem.

5 Further Work

The gain of FPGA resources achieved by merging
similar templates and other optimizations as described
in Section 4.3 have to be accomplished.

Furthermore, the design for camera readout, pre-
processing and matching has to be integrated in one
design as we did for other image processing applica-
tions as described in [5].

The second pipeline for preprocessing, the back-
ward transformation of DT, the sorting of pixels (see
Fig. 7), and the pipeline for template matching (see
Fig. 10) could be combined in one pipeline. Storage,
sorting and resorting of data become redundant. The
different read-out addresses caused by the different ex-
tensions of SRAs must be compensated by internal
Block RAM between the output of the DT modules
and input of the SRAs. The biggest SRA needs no
Block RAM, the smallest needs most.

Generally it is possible to build one big pipline of
preprocessing and matching if are used parallel DTs.
In this case the template matching must be calculated
in forward direction which requires a turning of the
templates. To be sure, we would only concentrate on
this approach, if the use of FPGA resources is no sen-
sitive issue.

Using images of a size more than 512 x 512 pixels,
internal Block RAM could be saved by calculating the
correlation not on the whole DT images, but on stripes
of them. The maximum size of one stripe could be 512
plus the extension of the smallest SRA in x direction.
The overlap of two neighbouring stripes has also been
taken into account, since at the border of the stripes
no results will be found.

To increase the number of templates of the same
shape but of different scale, orientation or skew it is
advantageous to put only the basic templates in our
matching method and calculate the correlation of the
others by transforming the images. Hardware imple-
mentations for 2 times down-sampled and rotated im-
ages are given e.g. in [12]. In this case the image must
be transformed before the preprocessing, which means
that the total computing time multiplies. Thus it gets
clear that if the FPGA resources are the bottleneck,

the trinagles up and down are taken into account only
once.

Another method to increase the number of tem-
plates is to use FPGAs with submillisecond reconfigu-
ration time. The preprocessing will then be done only
once and the matching will be retried. The possibility
of partial reconfiguration reduces the reconfiguration
time significantly. In this case the best strategy could
be to fix the SRAs and the adder trees and to replace
the connections between them only.

6 Results

The simulation of preprocessing, template match-
ing and combined preprocessing and template match-
ing to top 6 circles has been done successfully using
CHDL [10].

The Place and Route (P&R) of the designs is per-
formed with P&R tools (version 3.1) from XILINX.
For XC2V3000 FPGA results for preprocessing (PP)
only and combined preprocessing and template match-
ing (TM) are given for 12 circles and 12 triangles in
Tab. 2. Also, the expected calculation times for 5122
images are shown.

Slices Blk Freq. Time
RAM | [MHz] [ms]
PP 1712 (11%) 4 96 5.5
PP+TM 12 | 10443 (72%) 20 82 9.6
PP+TM 24 | 14334 (99%) 26 57 14.8

Table 2: Results of P&R for preprocessing and tem-
plate matching and the expected calculation times for
5122 images on XC2V3000 FPGA.

The designs have so far been tested on two different
demonstrator systems. First, grabbing, preprocess-
ing and matching of 6 circles runs on three yEnable-I
boards [8], each on one board. Second, the combined
design of preprocessing and matching of 12 circles runs
on one pEnable-IT board.

7 Conclusions

We presented a novel FPGA-based implementa-
tion for (edge-based) object detection in images. The
various logical entities of preprocessing (edge detec-
tion, noise edge removal and distance transform), were
tightly integrated into two large pipelines. Template
matching with distance images was multiplexed to ac-
count for multiple edge orientations, and implemented

in highly parallel fashion. As demonstrated in simula-
tions and actual tests on various FPGA boards, the
followed approach resulted in high processing rates
with efficient use of resources.

References

[1] D.M. Gavrila, “Multi-feature Hierarchical Tem-
plate Matching Using Distance Tranforms”, in In-
ternational Conference on pattern Recognition, pp.
439-444, Brisbane, 1998.

[2] D.M. Gavrila, V. Philomin, “Real-Time Object
Detection for ”Smart” Vehicles”, in Proc. Int. Conf.
on Computer Vision, pp. 87-93, 1999.

[3] G. Borgefors, “Distance Transformations in Digi-
tal Images” Computer Vision, Graphics, and Image
Processing 34, pp. 344-371, 1986

[4] T. Ikenaga, T. Ogura, “Real-Time Morphology
Processing Using Highly parallel 2-D Cellular Au-
tomata CAM 27, IEEE Transactions on Image Pro-
cessing, Vol. 9, No. 12, Dec. 2000.

[5] P. Dillinger, S. Hezel, H. Lauer: “FPGAs
zur Echtzeit-Bildverarbeitung mit 1D/2D-FIR-
Filteroperationen”. Image Processing and Machine
Vision, VDI Berichte 1572, Diisseldorf , pp. 213-
218, 2000.

[6] T. Kean, A. Duncan, “A 800 Mpixel/sec Reconfig-
urable Image Correlator on XC6216”, in Proceed-
ings of FPL ’97, pp. 382-391, 1997.

[7] J. Villasenor, B. Schoner, K. Chia, and C. Zapta,
et.al., “Configurable Computing Solutions for Auto-
matic Target Recognition”, Proceedings of the 1996
Symposium on FPGAs for Custom Computing Ma-
chines, pp. 70-79 , April 1996.

[8] O. Brosch, P. Dillinger, K. Kornmesser, A. Kugel,
R. Ménner, M. Sessler, H. Simmler, H. Singpiel, S.
Riihl, R. Lay and K.-H. Noffz, L. Levinson, “Mi-
croEnable - A Reconfigurable FPGA Coprocessor”,
4th Worksh. on Electronics for LHC Ezperiments”,
pp. 402-406, Rome, Italy, 1998.

[9] S. Hezel, R. Minner, “Schnelle Berechnung
von 2-D FIR-Filteroperationen mittels FPGA-
Coprozessor mEnable”, in W.Forstner e.a. (Hrsg.),
Mustererkennung 1999, 21. DAGM Symposium,
Springer, pp. 250-257, Sept. 1999.

[10] K. Kornmesser, A. Kugel, R. Ménner, “The
FPGA Development System CHDL”, Proceedings of
the 2001 Symposium on FPGAs for Custom Com-
puting Machines, April 2001.

[11] A. Kugel, “RACE-1 - A PCI-64 based High
Performance FPGA Co-Processor”, http://www-
1i5.ti.uni-mannheim.de/fpga/race/, Jan. 2002.

[12] R.D. Turney, C.H. Dick, “Real Time Image Ro-
tation and Resizing, Algorithmns and Implementa-
tions” , www.xilinx.com, 1999.

