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The ability to recognize humans and their activities by vision is essential for
future machines to interact intelligently and effortlessly with a human-inhabited
environment. Some of the more promising applications are discussed.

A prototype vision system is presented for the tracking of whole-body move-
ment using multiple cameras. 3-D body pose is recovered at each time instant
based on occluding contours. The pose-recovery problem is formulated as a
search problem and entails finding the pose parameters of a graphical human
model whose synthesized appearance is most similar to the actual appearance
of the real human in the multi-view images. Hermite deformable contours are
proposed as a tool for the 2-D contour tracking problem.

The main contribution of this dissertation is that it demonstrates for the
first time a set of techniques that allow accurate vision-based 3-D tracking of
arbitrary whole-body movement without the use of markers.
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Chapter 1

Introduction

1.1 Research context

Despite the great strides computers have made over the years in terms of pro-
cessing speed and data storage, there has been limited progress in making them
intelligent assistants in people’s everyday lives. Such an assistant would recog-
nize you when you wake up in the morning, tell you what appointments you have
today, assist you in driving your car to work, allow you to work in interactive 3-D
spaces with participants at other sites, warn you if your children get in trouble
at home, and finally, perhaps play your favorite music when you return home.

The main reason for this lack of capability is that computers are currently
unable to perceive the environment in which they are embedded. Or, as Alex
Pentland from the M.I.T. Media Lab puts it, they are “blind and deaf” [73].
They need to be spoon-fed with information by keyboard or mouse input; a very
low-bandwidth and tedious form of communication. This inevitably leads to a
reactive mode of operation, where typed-in commands are simply executed. An
important aspect of what humans perceive as intelligence is, however, a pro-
active stance, based on what is currently happening in the environment and
what is about to happen.

If computers are to be made aware of their environment, vision and speech are
the modalities of greatest importance. It is more practical for computer vision
to restrict its scope to recognizing humans and their activities, rather than aim
to solve the general object recognition problem. Prior knowledge about human
shape and articulation can then be used to simplify the vision problem, and a
real system can be built.

1.2 Applications

There are a number of promising applications in the “Looking at People” area in
computer vision, in addition to the general goal of designing a machine capable



general domain specific area

virtual reality - interactive virtual worlds
- games

- virtual studios

- character animation

teleconferencing
(e.g. film, advertising, home-use)

“smart” surveillance systems | - access control

- parking lots

- supermarkets, department stores
- vending machines, ATMs

- traffic

advanced user interfaces - social interfaces

- sign-language translation

- gesture driven control

- signaling in high-noise environments
(airports, factories)

motion analysis - content-based indexing of
sports video footage
- personalized training in golf, tennis, etc.
- choreography of dance and ballet
- clinical studies of orthopedic patients

model-based coding very low bit-rate video compression

Table 1.1: Applications of “Looking at People”

of interacting intelligently and effortlessly with a human-inhabited environment.
These applications will be now discussed in some detail; for a summary please
see Table 1.

An important application domain is smart surveillance. Here “smart” de-
scribes a system that does more than motion detection, a straightforward task
prone to false alarms (there might be animals wandering around, wind blowing,
etc.). A first capability would be to sense if a human is indeed present. This
might be followed by face recognition for the purpose of access control. In other
applications, one needs to determine what a person in the scene is doing, rather
than simply signaling human presence. In a parking lot setting, one might want
to signal suspicious behavior such as wandering around and repeatedly bending
over to cars. In a supermarket or department store setting, valuable marketing
information could be obtained by observing how consumers interact with the
merchandise; this would be useful in designing a store lay-out which encourages
sales. Other surveillance settings involve vending machines, ATMs and traffic.



Another application domain is virtual reality. In order to create a presence
in a virtual space one needs to recover the body pose in the physical space first.
Application areas lie in interactive virtual worlds, with the internet as a possible
medium. The development of interactive spaces on the internet is still in its
infancy; it is in the form of “chat rooms” where users navigate with icons in
2-D spaces while communicating by text. A more enriched form of interaction
with other participants or objects will be possible by adding gestures, head pose
and facial expressions as cues. Other applications in this domain are games,
virtual studios, motion capture for character animation (synthetic actors) and
teleconferencing.

In the user-interface application domain, vision is useful to complement
speech recognition and natural language understanding for a natural and in-
telligent dialogue between human and machine. The contribution of vision to
a speech-guided dialogue can be manifold. One can simply determine if a user
is present to decide whether to initiate a dialogue or not. More detailed cues
can be obtained by recognizing who the user is, observing facial expressions and
gestures as the dialogue progresses, perhaps remembering some of the past inter-
actions, and determining who is talking to whom in case of multiple participants.
Vision can also provide speech recognition with a more accurate input in a noisy
environment by focusing the attention to the spatial location of the user. This
is achieved either by a post-filtering step when using a phased array of micro-
phones or, more actively, by directing a parabolic microphone to the intended
source. Finally, vision can also prove helpful for phoneme disambiguation i.e.
lip reading.

One important application area in the user-interface domain is in social inter-
faces. They involve computer-generated characters, with “human-like” behav-
iors, who attempt to interact with users in a more personable way [97]. Other
application areas in the user interface domain are sign-language translation, ges-
ture driven control of graphical objects or appliances, and signaling in high-noise
environments such as factories or airports.

Another application domain is motion analysis in sports and medicine. A
specific application area is context-based indexing of sports video footage. In a
tennis context, one may want to query a large video archive with “give me all
the cases where player X came to the net and volleyed”. This would eliminate
the need for a human to browse through a large data set. Other applications lie
in personalized training systems for various sports; these systems would observe
the skills of the pupils and make suggestions for improvement. Vision-based
motion analysis is also useful for in the choreography of dance and ballet, and
also for clinical studies of orthopedic patients.

Finally, one can add model-based coding as a possible application domain. In
a video phone setting, one could track faces in image sequences and code them
in more detail than the background. More ambitiously, one might try to recover



a 3-D head model initially and code only the pose and deformation parameters
subsequently. It is unclear whether these applications will materialize; the first
because it provides a rather modest compression gain and is specific to scenes
with human faces, the second because it involves significant processing, which at
least currently, is nowhere near real-time and the results are poor when compared
to general-purpose compression.

In all of these applications, a non-intrusive sensory method based on vision
is preferable over a (in some cases a not even feasible) method that relies on
markers attached to the bodies of the human subjects or a method which is
based on active sensing.

1.3 Outline

This dissertation deals with the vision-based analysis of scenes involving humans.
The general approach has been to make extensive use of prior knowledge, in terms
of generic 3-D human models, in order to recover 3-D shape and pose information
from 2-D image sequences.

The dissertation is divided in six chapters. Chapter 2 discusses the relevant
background, starting from an inter-disciplinary perspective and then focusing on
the work in computer vision on the analysis of hand and whole-body movement.
The pose recovery and tracking approaches have been grouped in three sections,
depending on the model and the dimensionality of the tracking space which is
used. The last section deals with past work on movement recognition; at this
stage, the relevant features have been extracted from the images.

Chapter 3 describes a prototype vision system which uses multiple cameras,
placed in the corners of a room, to observe a scene where one or more human
performs some type of activity. Its aim is to recover from the multi-view images
the 3-D body pose of the humans over time and subsequently, to recognize body
movements. The chapter starts with a motivation of the choice to pursue a 3-D
recovery approach rather than a 2-D approach.

Section 3.2 discusses the general framework for model-based tracking as used
in this work. Section 3.3 covers the 3-D human modeling issues and the (semi-
automatic) model-acquisition procedure which is invoked initially. Section 3.4
deals with the pose estimation component once the human model has been ac-
quired. Included is a bootstrapping procedure to start the tracking or to re-
initialize if it fails. Section 3.5 discusses the prediction and image analysis com-
ponent. Section 3.6 proposes Dynamic Time Warping for movement classifica-
tion. Section 3.7 presents experimental results in which successful unconstrained
whole-body movement is demonstrated on two subjects. These are results de-
rived from a large Humans-In-Action (HIA) database containing two subjects
involved in a variety of activities, of various degrees of complexity.



The search for a better edge segmentation during tracking has led to the
work on deformable contours reported in Chapter 4. Deformable contours are
energy-minimizing models which overcome some of the problems of traditional
bottom-up segmentation methods, such as edge gaps and spurious edges, by tak-
ing into account shape prediction in addition to image features. The underlying
idea is to use this technique in the before-mentioned tracking system of humans,
by initializing the deformable contours at the predicted location of the human(s)
in the new frame. Section 4.1 discusses related work. In Section 4.2 the Her-
mite representation is proposed for deformable contour finding, together with an
optimization procedure based on dynamic programming. The experiments are
described in Section 4.6.

The last part of the dissertation, Chapter 5 deals with initial results on recur-
sive 3-D head shape estimation from monocular images. Given reasonably noisy
feature-tracks, 3-D head motion is estimated recursively using a Kalman filter.
Using this motion estimate and a generic 3-D head model, fitted to a frontal
view, initial results are reported on recovering 3-D head shape from contours.

Finally, Chapter 6 contains the conclusions of this dissertation together with
suggestions for future work.

1.4 Problem formulation

The main purpose of this thesis is to present a set of techniques which allow
vision-based 3-D pose recovery and tracking of unconstrained whole-body human
movement without the use of markers. Related to this goal is an investigation
of image segmentation techniques that can take advantage of a model-based
tracking approach. Towards the end of the thesis, preliminary attention has
been given to the problem of 3-D head model acquisition from monocular head-
shoulder images.

The current prototype system for 3-D whole-body pose recovery and tracking
operates under the following conditions

e The system knows only about humans. It does not model any other objects
in the scene (e.g. tables, chairs) and can therefore be thrown off by large
occlusions of human body-parts by these objects.

o The system uses multiple cameras. Although many of the techniques de-
scribed here apply to the monocular case as well, it is acknowledged that
multiple cameras greatly aid in successful 3-D tracking by allowing bet-
ter object localization and motion disambiguation. Multiple cameras are
especially helpful for 3-D model-acquisition.

e The cameras are calibrated. For the followed 3-D recovery approach by
synthesis it is necessary to know the relative positioning of the cameras



and their effective focal length in order to know how 3-D structure (with
respect to one camera or to the world) is mapped onto pixel coordinates.
Camera calibration is done initially.

e The system uses a simplified model for the human body. The body is
modeled as an articulated rigid body and does not account for loose fitting
clothes, loose hair and muscle deformations. In practice, these simplifica-
tions are acceptable; the purpose of 3-D modeling is not to allow highly
realistic renderings of the human, but to capture shape sufficiently accu-
rate to support image segmentation. The system does not model dynamics
such as the notion of support. It is aware, though, of joint angle limits.

e Model-acquisition is done semi-automatically in an initialization proce-
dure. This involves frontal and sideway views of each body part derived
from an externally supplied contour segmentation.

e The initial 3-D pose of the human at the start of tracking is approximately
known. For the case of a single human in the scene standing upright, this
assumption can be relaxed.

e There is no pose ambiguity. Each body part is visible in the images, or, in
the case of occlusion, its location can be determined by model constraints.
The system maintains only one estimate of the current pose and it cannot
handle conditions where, due to occlusion, a variety of poses are acceptable.
Also, the system does not know when to stop or start tracking an occluded
body part.

No image segmentation is assumed given to the system other than for the model-
acquisition stage. In particular, no feature point-correspondences (e.g. at joints)
between model and image are assumed given. Moreover, the system does not
even attempt to recover point-features in images for correspondence with the
model or across multiple views, because of lack of such identifiable features over
the whole human body. The system uses perspective projection.

The main problem of this thesis, as formulated above, is challenging because
it involves

e segmentation of rapidly changing 2-D scenes
e recovering 3-D structure and motion
e dealing with articulated (non-rigid) motion

e handling (self) occlusions



Chapter 2

Background

There has been keen interest in human movement from a wide variety of disci-
plines. In psychology, there have been the classic studies on human perception
by Johansson [45]. His experiments with moving light displays (MLD) showed
that human observers can almost instantly recognize biological motion patterns
even when presented with only a few of these moving data points. This suggested
that recognition of moving parts could be achieved directly from motion, without
structure recovery. In the hand gesture area, there have been many studies on
how humans use and interpret gestures, see for example work by McNeill [63].
Quek [76] has put this in the context of vision-based human-computer interfaces.

In kinesiology (i.e. biomechanics) the goal has been to develop models of the
human body that explain how it functions mechanically. The increase of move-
ment efficiency has also been an issue. The first step involves motion capture
by placing active or passive markers on the human subject. Typically, the data
undergoes kinematic analysis followed by the computation of forces and torques,
see [17].

In choreography, there has been long-term interest in devising high-level de-
scriptions of human movement for the notation of dance, ballet and theater.
Some of the more popular notations have been the Labanotation, the Ekshol-
Wachmann and the Effort-Shape notation. Across the variety of notation sys-
tems there has been little consensus of what these general-purpose descriptions
should be. Badler and Smoliar [7] provide a good discussion.

Computer graphics has dealt with the synthesis of human movement. This
has involved devising realistic models for human bodies for applications in crash
simulations, workplace assessment and entertainment. Some of the issues have
been how to specify spatial interactions and high-level tasks for the human mod-
els. See [7] [6] [61].

The reported work in vision has increased significantly over the past three
years, following the “Looking at People” workshop in Chambery (1994) and
the two “Automatic Face and Gesture Recognition” workshops in Zirich (1995)
and Killington (1996). Some of it has now also reached the popular scientific



press [73]. This chapter discusses previous work dealing with the vision-based
analysis of hand and whole-body movement. The hand and whole-body tracking
problems are discussed together because of their similarities (i.e. both involve
articulated structures).

Previous work has dealt with human body segmentation, pose recovery, track-
ing and action recognition. It is useful to consider the following dimensions when
classifying previous vision work:

e the type of models used (stick figures, volumetric models, none),

e the dimensionality of the tracking space (2-D or 3-D),

sensor modality (visible light, infra-red, range),

e sensor multiplicity (monocular, stereo),

e sensor placement (centralized vs. distributed) and
e sensor mobility (stationary vs. moving).

For convenience, the discussion is organized in three parts, based the first two
dimensions: the 2-D model-free approach, the 2-D model-based approach and
the 3-D model-based approach. This is followed by a discussion of the remaining
work. Earlier reviews were given by Aggarwal et al. [1] and Cedras and Shah

[19].

2.1 The 2-D model-free approach

One possible approach to action recognition has been to bypass a structure re-
covery step altogether and to use simple “low-level”, model-free 2-D features
from a region of interest. This approach has been especially popular for appli-
cations of hand pose estimation in sign language recognition and gesture-based
dialogue management.

For hand pose estimation, the region of interest is typically obtained by
background image subtraction or skin color detection. This is followed by mor-
phological operations to remove noise. The extracted 2-D features are based on
hand shape, movement and/or location of the interest region. For shape, Free-
man et al. [31] use x-y image moments and orientation histograms, Hunter et al.
[43] use rotationally invariant Zernike moments and Kjeldsen and Kender [53]
use the cropped region directly. Others [94] [21] [25] [91] consider the motion
trajectories of the hand centroids. Pose classification is based on hard-coded
decision trees [94] [21] [25], nearest neighbor criteria [43], neural networks [53]
or Hidden Markov Models [91]. Some additional constraints on pose can be



imposed using a dialogue structure where the current state limits the possible
poses that can be expected next.

Similar techniques have been applied for model-free whole-body action recog-
nition. A K x K spatial grid is typically superimposed on the interest region,
after a possible normalization of its extent. In each of the K x K tiles a simple
feature is computed, and these are combined to form a K x K feature vector to
describe the state of movement at time ¢. Polana and Nelson [75] use the sum of
the normal flow within a tile as feature, Yamamoto et al. [103] use the number
of black pixels in the thresholded tile and Takahashi et al. [93] define an average
edge vector for each tile. Darell and Pentland [24] use the image pixels directly
for their correlation-matching approach. Action recognition is subsequently con-
sidered as a time-varying pattern matching problem and a number of techniques
apply which will be discussed later, in Section 2.4.

General-purpose motion-based segmentation and tracking techniques have
also been used for applications such as people counting. Shio and Sklansky [88]
aim to recover the average 2-D image velocity of pedestrians in a traffic set-
ting. They obtain a motion field based on correlation techniques over successive
frames. The motion field is smoothed both spatially and temporally to reduce
the effects of non-rigid motion and measurement errors. A quantization of the
field is then followed by an iterative merging step which results in regions with
similar motion direction. Segen and Pingali [86] group partially-overlapping fea-
ture tracks over time in a real-time implementation.

2.2 The 2-D model-based approach

This section discusses work which uses prior knowledge of how the human body
(or hand) appears in 2-D, taking essentially a model- and view-based approach
to segment, track and label body parts. Since self-occlusion makes the problem
quite hard for arbitrary movements, many systems assume a-priori knowledge of
the type of movement and/or the viewpoint under which it is observed.

A number of researchers have analyzed scenes involving human gait parallel to
the image plane. Geurtz [33] performs hierarchical and articulated curve fitting
with 2-D ellipsoids. Niyogi and Adelson [68] [69]advocate segmentation over time
because of robustness; their procedure involves finding human silhouettes with
deformable contours in X-T space [68] or deformable surfaces in X-Y-T space
[69]. Guo, Xu and Tsuji [36] propose obtaining a 2-D stick figure by obtaining
the skeleton of the silhouette of the walking human and matching it to a model
stick figure. They use a combination of link orientations and joint positions of
the obtained stick figure as features for a subsequent action recognition step.
Ju, Black and Yacoob [48] use a parametrized motion model to analyze gait
constrained to a plane. The legs are modeled a set of connected planar patches.



An early attempt to segment and track body parts under more general con-
ditions is made by Akita [3]. The assumption here is that the movement of
the human is known a-priori in the form of a set of representative stick figure
poses or "key frames”. These would be of help when the the tracking of body
parts fails. Unfortunately, it is not clear from the paper how well the proposed
segmentation and tracking algorithms perform. Without a-priori knowledge of
the type of movement being performed, Long and Yang [60] track the limbs of
the human silhouette by tracking anti-parallel lines (apars). They develop meth-
ods to deal with occlusions, resulting in the appearance, disappearance, merging
and splitting of the apars. Leung and Yang [58] report progress on the general
problem of segmenting, tracking and labeling of body parts from a silhouette
of the human. Their approach features moving edge detection, ribbon tracking
and a number of structural constraints, including the concept of support. Wren
et al. [101] take a region-based approach. Their real-time system models and
tracks the human body as a connected set of “blobs”; these are image regions
defined by similar color statistics. Heuristics based on spatial relationships are
used for the labeling of body parts. Finally, Kahn and Swain [49] describe a
system which detects humans pointing laterally.

2.3 The 3-D model-based approach

In this section we discuss work that aims to recover 3-D articulated pose over
time, i.e. joint angles with respect to an object-centered [62] coordinate system.
3-D motion recovery from 2-D images is often an ill-posed problem. In the case
of 3-D human tracking, however, one can take advantage of the large available a-
priori knowledge about the kinematic and shape properties of the human body
to make the problem tractable. Tracking also is well supported by the use
of a 3-D model which can predict events such as (self) occlusion and (self)
collision. Once 3-D tracking is successfully completed, one has the benefit of
being able to use the 3-D joint angles as features for movement matching, which
are viewpoint independent and directly linked to the body pose. Compared to
3-D joint coordinates, joint angles are less sensitive to variations in the size of
humans.

A quick and accurate, yet obtrusive, method to obtain 3-D joint data with
multiple cameras involves placing easily-identifiable markers on the joints and
obtaining 3-D data by triangulation. In the remainder, the discussion deals with
approaches to articulated motion recovery which are not based on triangulation.
They use a single camera (unless stated otherwise) and the model (i.e. stick
figure or volumetric) is assumed given.

One approach to 3-D articulated pose recovery from a sequence of single-view
images is to use a divide-and-conquer technique. This involves decomposing the
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object into a number of simple (rigid or articulated) parts, solving for motion
and depth of the subparts and verifying whether the parts satisfy the necessary
constraints. Shakunaga [87] identifies such a set of primitive articulated struc-
tures for which he solves the pose recovery problem using angles between line
features in the image.

To avoid unfavorable combinatorics at the verification step, it is beneficial
to propagate constraints from part to part. The primitives of O’Rourke and
Badler [71] are box-shaped regions which represent possible joint locations in 3-D.
These regions are initially refined by the measurement of the joints in the images
(assumed given) and the orthography assumption. A constraint propagation
procedure is then applied based on the known distances between connected joints.
The verification procedure involves an iterative search procedure on the refined
3-D uncertainty regions, in which angular and collision constraints are verified
using the 3-D model.

Other work has used projective geometry. The constraint propagation scheme
of Chen and Lee [22] starts at the human head and continues via the torso to
the limbs. An interpretation tree is built to account for the spatial ambiguity
which arises from the fact that there are two possible poses of a link (of known
length) in 3-D which result in the same 2-D projection. This interpretation tree
is pruned later for physically implausible poses. Chen and Lee’s assumption of
six known feature points on the head to start the procedure and the overhead
of the interpretation tree makes their approach somewhat less appealing. Zhao
[104] has a similar problem formulation but does not maintain the interpretation
tree, considering instead only one pose at the time. He monitors when spatial
ambiguities are encountered and disambiguates them by temporal coherence.
Holt et al. [42] provide a constraint propagation scheme for human gait, where
one joint remains at a fixed location. Motion constraints are also incorporated
at the earliest stages. The core of their system involves solving a polynomial
system of equations. Other approaches have imposed general constraints on the
articulated motion, such as the “fixed-axis” [99] or in-plane [40] assumptions of
rotations.

Hel-Or and Werman [38] describe a technique for articulated pose recovery
based on the fusion of constraints and measurements using a Kalman filter frame-
work. Kakadiaris and Metaxas [51] use a physics-based approach where various
forces act on the different parts to align them with the image data. Constraint
forces enforce point-to-point connectivity between the parts.

Other approaches to 3-D articulated motion use parametrized models where
the articulation constraints are encoded in the representation itself. One such
approach [28] [104] [80] [81] [35] uses feature correspondence between model and
image to update pose by inverse kinematics, a common technique in robot control
theory [89]. The state space maps onto image space by a non-linear measurement
equation which takes into account the coordinate transformations at various
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articulation sites and the 3-D to 2-D projection. Inverse kinematics involves
inverting this mapping to obtain changes in state parameters which minimize the
residual between projected model and image features. The procedure involves a
linearization of the measurement equation, as defined by the Jacobian matrix,
and a gradient-based optimization scheme. The inverse kinematics approach can
also be taken with multiple cameras when no feature correspondence between
cameras is assumed. One simply concatenates the residual from the available
camera views, see for example [81].

Another approach using parametrized models does not attempt to invert a
non-linear measurement equation. Instead it uses the measurement equation
directly to synthesize the model and uses a fitting measure between synthesized
and observed features for feedback, see [41] [29] [82] [74] [70] [56]. Pose-recovery
can then be formulated as a search problem which entails finding the pose pa-
rameters of a graphical human model whose synthesized appearance is most
similar to the actual appearance of the real human. These systems do not need
to assume point correspondences between model and image, they match based
on occluding contours. Ohya and Kishino [70] use a global search strategy based
on genetic algorithms and Kuch and Huang [56] generate random moves locally.
Straightforward extensions to the multi-camera case have also been employed in
simulations [70].

Finally, a different approach to articulated pose recovery altogether has been
proposed by Heap and Hogg [37]. Their example-based approach allows shape
deformations as well and is based on a principal component analysis of 3-D
positional data.

Deriving feature correspondences between model and image remains, of course,
an open issue. Approaches [71] [22] [104] [42] which assume that joint correspon-
dences are given make strong assumptions. Moreover, relying exclusively on a
few joint correspondences makes the resulting approach [28] [80] quite sensi-
tive to occlusion. To alleviate this, some work has used evaluation measures
for the model-to-image fit based on image regions in the neighborhood of the
projected model contours. These include measures based on correlation (on a
raw or smoothed LOG-filtered image) [35] [81], normal distance from projected
model contours to image edges [37] and straight-line distance metrics [82]. The
approach by Yamamoto and Koshikawa [102] uses optical flow. Others assume
feature correspondence is given to their pose recovery algorithm [87] [22] [104]
[42].

The last part of this section reviews the previous work in terms of experimen-
tal results on real data. Dorner [28] tracks articulated 3-D hand motion (palm
motion and finger bending/unbending) with a single camera in several examples.
However, her system requires colored markers on the joints and cannot handle
occlusions. Rehg and Kanade [80] do not require markers. They track an 8-DOF
partial hand model (movement of palm in a 2-D plane and three fingers) with one
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camera and a full 27-DOF hand model with two cameras in near real-time from
the hand silhouette (hand is against a black background). Occlusion cannot be
handled, although a later version [81] does tolerate some occlusion; a successful
tracking example is shown where one finger moves over the other finger, with
the rest of the hand fixed. Heap and Hogg [37] show initial tracking results
on hand model and hand pose recovery; several questions about occlusion and
implausible model shapes still remain open.

In terms of experimental results on whole-body movement using a single cam-
era, Hogg [41] and Rohr [82] deal with the restricted movement of gait (parallel
to image plane). The movement is essentially in 2-D with no significant move-
ment in depth. Given that gait is modeled a-priori, the resulting search space
is one-dimensional. Downton and Drouet [29] attempt to track unconstrained
upper-body motion but must conclude that tracking gets lost due to propagation
of errors. Both Goncalves et al. [35] and Kakadiaris and Metaxas [51] track one
arm while keeping the shoulder fixed. Goncalves et al. [35] furthermore assume
that the 3-D shoulder position is known. Finally, Perales and Torres [74] describe
a multi-view system which requires input from a human operator.

In almost all previous approaches on real data it has been difficult to ascertain
how good the 3-D pose recovery results are; no ground truth is given and no
orthogonal camera view is available to, at least visually, verify the recovered
pose along the depth dimension.

2.4 Action recognition

There are different ways to view human action recognition. A narrow inter-
pretation considers it simply as a classification problem involving time-varying
feature data. This consists of matching an unknown test sequence with a library
of labeled sequences which represent the prototypical actions. A complementary
problem is how to learn the reference sequences from training examples. Both
learning and matching methods have to be able to deal with small data and time
scale variations within similar classes of movement patterns.

Rangarajan et al. [79] match motion trajectories of selected points by a
parametrization based on the locations where significant changes in direction
or speed occur. Matching between reference and test trajectories allows a fixed
amount of time-offset, using a Gaussian-convoluted reference parametrization.
Goddard [34] represents activities by scenarios; a sequence of events with en-
abling conditions, and time-constraints between successive events. Fach possible
scenario 1s matched and given a measure of appropriateness, depending on the
cumulative confidence in the scenario, the likelihood that its “next” event has
occured, and the time-constraints. No learning takes place in the previous two
methods. Campbell and Bobick [18] use a phase-space representation in which
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the velocity dimensions are projected out, discarding the time component of the
data altogether. This makes the learning and matching of patterns simpler and
faster, at the potential cost of an increase in false positives. Other general tech-
niques for time-varying data analysis have been used as well: Dynamic Time
Warping (DTW) [24] [93] [100], Hidden Markov Models (HMM) [77] [103] [91]
and Neural Networks (NN) [36] [83].

Another aspect of human action recognition are static postures; sometimes
it is not the actual movement that is of interest but the final pose (for example,
pointing). Herman [39] describes a rule-based system to interpret body posture
given a 2-D stick figure. Although the actual system is applied on a toy problem
(in baseball), it does make the point to use qualitative pose measures together
with other attributes such as facing direction and contact. It also emphasizes
the importance of contextual information in action recognition.
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Chapter 3

3-D body tracking and movement recognition

3.1 Motivation for the followed approach

This work takes a 3-D recovery approach to body tracking and movement recog-
nition using a joint-parametrized graphical model for synthesis. Rather than
employing a gradient-based optimization scheme, it uses local search in the pose
parameter space of the model. Matching between synthesized model and image
is based on occluding contours. Multiple cameras are used; they use perspective
geometry. This approach is motivated as follows.

Recognition systems using 2-D features have been able to claim early suc-
cesses in the analysis of human movement. For applications with typically a
single human, constrained movement and a single viewpoint (i.e. recognizing
gait parallel to the image plane, lateral pointing gestures, small vocabulary of
distinct hand gestures) the 2-D approach often represents the easiest and best
solution.

The aim of this work, in contrast, is to deal with unconstrained and complex
(multi) human movement (e.g. humans wandering around, making different
gestures while walking and turning, social interactions such as shaking hands
and dancing). It is deemed unlikely that this can be achieved by a purely 2-D
approach. A 3-D approach leads to a more accurate, compact representation of
physical space which allows a better prediction and handling of occlusion and
collision. It leads to meaningful features for action recognition, which are directly
linked to body pose. Furthermore, the 3-D recovery approach is of independent
interest for its use in virtual reality applications.

The advantage of using joint-parametrized human models and synthesis for
3-D pose recovery is that the resulting approach takes advantage as much as
possible of prior 3-D knowledge and relies as little as possible on error-prone
2-D image segmentation. Unlike other work [71] [22] [28] [104] [42] [80] no point
feature correspondences are needed between model and image (e.g. at the joints).
Matching is based on whole (occluding) contours and regions, rather than based
on a few points.
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It is recognized that an inverse kinematics approach with the associated
gradient-based optimization scheme has the advantage that it exploits gradi-
ent cues in the vicinity of a minimum and therefore can be very efficient in some
cases, see for example [80]. For robustness, a local non-greedy search method was
chosen here instead, taking the higher computational cost in stride. The main
reason for choosing for a non-greedy search procedure is that in this application
a gradient-based method is very likely to get stuck in a local minimum, i.e. to
converge to a sub-optimal or undesired solution. There are two main reasons
why this is to be expected.

First, the measurement equation is highly non-linear. It contains a composi-
tion of various non-linear rotation matrices at the articulation sites and the full
6-DOF rigid transformation matrix of the root. The measurement equation will
also have to include the non-linearity of the perspective projection. At the same
time, the sampling ratio at which measurements are obtained is limited to frame
rate. This is a problem for fast movements of locomotion and gesticulation; large
parameter deviations will be poorly captured by a linearization of the measure-
ment equation around the current state. Second, the measurements can be noisy
or incorrect. No known points-correspondences are assumed between 3-D model
and 2-D images. The correspondence of points on the occluding contours is
prone to errors because of the aperture problem. Incorrect correspondences can
be made altogether because of the existence of nearby noise edges or edges of
different occluding contours ([80] [35] [51] do not have noisy data, their tracked
object is white and the background is black).

A non-greedy search method also promises to be more robust over time; if it
fails to find a good solution at time ¢, there is still a chance that it may recover
at time ¢ 4 1, if the search area is sufficiently wide.

In terms of comparison with the previous systems which use a similar ap-
proach to 3-D model-based pose recovery based on synthesis, one can note that
the current work deals with automatic tracking (unlike [74]), unconstrained full-
body motion (unlike any previous work) and real data (unlike [71] [70]). Working
with real data involves errors in body modeling, camera calibration and image
segmentation which are difficult to simulate (for example, [71] [70] do not ac-
count for these errors). To build a robust system for the above conditions, several
improvements are proposed in terms body models, search procedure and search
evaluation measure (see next sections). Similar to [70], a multi-view approach is
used to mitigate the effects of occlusion and allow better 3-D object localization.

3.2 Model-based tracking

The general framework of the proposed tracking system is inspired by the early
work of O’Rourke and Badler [71]. It is illustrated in Figure 3.1. Four main

16



components are involved: prediction, synthesis, image analysis and state esti-
mation. The prediction component takes into account previous states up to
time ¢ to make a prediction for time ¢ + 1. It is deemed more stable to do the
prediction at a high level (in state space) than at a low level (in image space),
allowing an easier way to incorporate semantic knowledge into the tracking pro-
cess. The synthesis component translates the prediction from the state level to
the measurement (image) level, which allows the image analysis component to
selectively focus on a subset of regions and look for a subset of features. Finally,
the state-estimation component computes the new state using the segmented
image.

The above framework is general and can also be applied to other model-
based tracking problems. The next sections will discuss how the components are
implemented in this system for the case of tracking humans.

3.3 3-D body modeling and model acquisition

3-D graphical models for the human body generally consist of two components: a
representation for the skeletal structure (the “stick figure”) and a representation
for the flesh surrounding it. The stick figure is simply a collection of segments
and joint angles with various degree of freedom at the articulation sites. The
representation for the flesh can either be surface-based (using polygons, for ex-
ample) or volumetric (using cylinders, for example). There is a trade-off between
the accuracy of representation and the number of parameters used in the model.
Many highly accurate surface models have been used in the field of graphics [6]
to model the human body, often containing thousands of polygons obtained from
actual body scans. In vision, where the inverse problem of recovering the 3-D
model from the images is much harder and less accurate, the use of volumetric
primitives has been preferred to “flesh out” the segments because of the lower
number of model parameters involved.

For the purposes of tracking 3-D whole-body motion, a 22-DOF model (3 DOF
for the positioning of the root of the articulated structure, 3 DOF for the torso
and 4 DOF for each arm and each leg) is used, without modeling the palm of the
hand or the foot, and using a rigid head-torso approximation. See [6] for more
sophisticated modeling. Here, the root of the articulated structure is kept fixed
at the center of the torso. Transformations between different coordinate systems
occur at sites of articulation (the joints) and are described by homogeneous
coordinates x = (z,y,2, 1)’ using

x' = Hx (3.1)
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where
R T
H= ( 0 1 ) (3.2)

and R is a 3 x 3 rotation matrix and T is a 3 x 1 translation vector. The
transformations are applied in fixed order, starting at the root and following
the tree-structure which represents the connectivity of the segments in the ar-
ticulated figure. In the case of human stick figure modeling, T is constant (no
prismatic joints) and R is variable at articulation sites. R is compactly described

by the three Euler angles (¢,6,) [89], i.e. the joint angles.

CpCeCyp — S¢Sy —CpCeSy — SpCy  CppSh
R = SpCoCy + CpSy  —SpCaSy + CpCyp  SpSg (33)
—SQC¢ 898¢ Cg
Human pose P(t) is thus represented by the time-varying 22-dimensional
parameter vector

P(t) = (Proot(,y,2), Prorso(¢,0,1),
Pr._sHOULDER(%,9,v), P1,_ELBOW (),
Pr_sHOULDER(¢,9.¢), PrR_ELBOW(F),

Pr_u1p(¢,0,v), PL_kNEE(Y),
Pr_u1pr(4,0,%), PL_kNEE(?)) (3.4)

where (¢, 0, 1) are the Euler angles. Throughout this work, the Euler angles
(¢,0,1) at the shoulders and hips will be called the elevation -, abduction - and
twist angles and the Euler angles 6 at the elbows and knees will be called the
flexion angles.

Regarding the shape, it was felt that simple cylindrical primitives (possibly
with elliptic XY-cross-sections), as in [29] [41] [82] [35], would not represent
body parts such as the head and torso accurately enough. Therefore, the class
of tapered super-quadrics [65] is employed; these include such diverse shapes as
cylinders, spheres, ellipsoids and hyper-rectangles.

Their parametric equation e = (ejeqe3) is given by [65]

a CrCe?
e=a| ayC252 (3.5)
aszSet
where —7/2 < u < 7 /2,—7 < v <7 and where S§ = sign(sinf)|sinf|*, and
C§ = sign(cosf)|cosf|. Furthermore, ¢ > 0 is a scale parameter, aq,as,as > 0
are aspect ratio parameters and ey, €5 are “squareness” parameters. Adding
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linear tapering along the z-axis to the super-quadric leads to the parametric
equation s = (s18283) [65].

(22 4+ 1)es

aas

s= [ (22 1 1)e, (3.6)

aay
€3

where —1 < ty,f5 < 1 are the tapering parameters along the x and y axes.
So far, satisfactory modeling results have been obtained with these primitives
alone (see experiments); a more general approach also allows the deformation of
the shape primitives [9] [72] [65].

Thus, human body shape S is considered time-invariant; it is represented by
the parameter vector

S=  (SHEAD, SNECK: STORSO,
SUPPER_ARM: SLOWER_ARM:
SUPPER_LEG:> SLOWER_LEG) (3.7)
with Sy = (a*,al, ak, ab, ¥, €5 1%, 15) the super-quadrics parameters for body

part k.

Ideally, both pose P(t) and shape S are recovered simultaneously from the
images. In this thesis, a model-acquisition stage is required initially to obtain
shape S. Thereafter, pose tracking only involves determining P(¢).

The shape parameters Sy = (a*, af, ak, af, ¥ c& 5 %) are derived in the
model-acquisition stage from the projections of occluding contours in two or-
thogonal views, parallel to the zx- and zy-planes. This involves the human
subject facing the camera frontally and sideways. The assumption made here is
that 2-D segmentation of each body part is given in the two orthogonal views (a
way to obtain such a segmentation is proposed by Kakadiaris and Metaxas [50]).
The shape estimation procedure is as follows. First, the two longitudinal 2-D
axes of a projected body part are used to recover the 3-D major axis the body
part by triangulation. The contours of the body parts are back projected for each
view onto the plane through the 3-D major axis parallel to the image plane. This
gives 3-D occluding contour data. A coarse-to-fine search procedure is used over
a reasonable range of parameter space Sy to determine the best-fitting quadric.
Fitting uses chamfer matching (see the next section) as a similarity measure
between the fitted and back-projected contours. Figure 3.2 shows frontal and
side views of the recovered torso and head for two persons: DARIU and ELLEN.
Figure 3.3 shows their complete recovered models in a graphics rendering. These
models are used in the tracking experiments of Section 3.7.

19



PREDICTION
STATE

SYNTHESIS
ESTIMATION
IMAGE

ANALYSIS

Figure 3.1: The tracking cycle

Figure 3.2: Frontal and side views of the recovered torso and head for the DARIU
and ELLEN model
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3.4 3-D pose estimation

The features of the generate-and-test approach to pose recovery and tracking
are: similarity measure between synthesized model and image, search procedure,
initialization and multi-view integration. These are discussed in turn. See Figure
3.4 for a schematic overview.

- Similarity measure

In this approach the similarity measure between model view and actual scene
is based on arbitrary edge contours rather than on straight line approximations
(as in [82], for example); we use a robust variant of chamfer matching [10]. The
directed chamfer distance DD(T, R) between a test point set T and a reference
point set R is obtained by summing the distance contributions of the individual
points t of set T, dd(t, R); the latter is defined as the distance from ¢ to the
nearest point in set R

DD(T,R) =Y dd(t,R) = Y min,en || t — 7 | (3.8)

tel teT

and its normalized version is

DD(T,R) = DD(T, R)/|T| (3.9)

DD(T, R) can be efficiently obtained in a two-pass process by pre-computing
the chamfer distance to the reference set on a grid with the desired resolution.
The distance map D[¢][j] with ¢ = 0,..., N+ 1 and j = 0,..., M 4+ 1 contains
initially two values: 0 at feature point locations (here, edge points) and “infinity”
elsewhere. If D[0][0] is considered the upper left corner and D[N + 1][M + 1]
the lower right corner of the grid, the forward pass shifts a 3 x 3 window row by
row from left to right, from the upper left corner to the lower right corner of the
grid, locally minimizing the distance at the window center with respect to the
upper-diagonal entries in the current window.

for (i:=1; i<=N; i++)
for (j:=1; j<=M; j++)
D[i][j] := min(D[il[;], DLil[j-11+2, D[i-11[j]+2,
D[i-11[j-11+3, D[i-1]1[j+1]1+3);

Conversely, the backward pass shifts a 3 x 3 window row by row from right to left,
from lower right corner to the upper left corner of the grid, locally minimizing
the distance at the window center with respect to the lower-diagonal entries in
the current window.
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Figure 3.3: The recovered 3-D models ELLEN and DARIU say “hi!”
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Figure 3.4: The pose-search cycle
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for (i:=N; i>=1; i--)
for (j:=M; j>=1; j--)
D[i]1[j] := min(D[i]1[j]1, DLi+1]1[j1+2, D[i]l[j+1]1+2,
D[i+1]1[j-11+3, D[i+1]1[j+1]1+3);

The resulting distance map is the so-called “chamfer image”. See Figure 3.5
for an example edge image and the corresponding chamfer image. As seen by the
above code fragment, the chamfer image can be computed very fast. Once it is
obtained, computing the chamfer distance involves simply indexing onto this grid
with the points of the reference set; the resulting grid values are subsequently
added.

It would be even more efficient if we could use only DD(M,S) during pose
search (as done in [10]), where M and S are the projected model edges and
scene edges, respectively. In that case, the scene chamfer image would have to
be computed only once, followed by fast access for different model projections.
However, using this measure alone has the disadvantage (which becomes appar-
ent in experiments) that it does not contain information about how close the
reference set is to the test set. For example, a single point can be really close
to a large straight line, but we may not want to consider the two entities very
similar. Therefore, the undirected normalized chamfer distance D(T, R) is used

D(T,R)=(DD(T,R)+ DD(R,T))/2 (3.10)

A further modification is to perform outlier rejection on the distribution
dd(t, R). Points t for which dd(t, R) is above a user-supplied threshold 6 are
rejected outright; the mean p and standard deviation o of the resulting distribu-
tion is used to reject points t for which dd(t, R) > p+20. With these changes the
chamfer matching becomes similar to the modified Hausdorff distance as used in
[44].

One notes that other measures could (and) have been used to evaluate a
hypothesized model pose, which work directly on the scene image: correlation
(see [35] and [81]) and average contrast value along the model edges (a measure
commonly used in the snake literature). The reason that was opted for prepro-
cessing the scene image (i.e. applying an edge detector) and chamfer matching
is that it provides a gradual measure of similarity between two contours while
having a long-range effect in image space. It is gradual since it is based on dis-
tance contributions of many points along both model and scene contours; as two
identically contours are moved apart in image space the average closest distance
between points increases gradually. This effect is noticeable over a range up to
threshold 4, in the absence of noise. The two factors, graduality and long-range,
make (chamfer) distance mapping a suitable evaluation measure to guide a search
process. Correlation and average contrast along a contour, on the other hand,
typically provide strong peak responses but rapidly declining off-peak responses.
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- Search

Search techniques are used to prune the N dimensional pose parameter space
(see also [70]). The search space X at time ¢ is defined by a discretization of
the pose parameter space by units of 5; along the various dimensions z. 3 is
restricted to the neighborhood of the predicted pose P = (p1, .., pn) as specified
by positive and negative deviations A and A7, resp.

Y={{pi} <. x{pn}},
{piy =1{pi— A7, .., B+ AT}, stepu; (3.11)

Best-first search [67] is used to search the state space X. search. This local
search procedure involves maintaining the set of states already evaluated and
picking at each iteration the state with the best evaluation measure to expand
next. The expansion of a state involves evaluating the neighboring states and
adding them to the set of states considered; a “neighboring” state is defined here
to be the states whose parameters differ by one unit increment n; with those of
the original state. Thus the expansion of a state involves a maximum of 2 « N
new states. A state corresponding to a physically impossible pose is dismissed
a-priori without the need for evaluation by synthesis.

A local search technique is used for pose-recovery because a reasonable ini-
tial state can be provided by a prediction component during tracking or by a
bootstrapping method at start-up. The use of a well-behaved similarity measure
derived from multiple views, as discussed before, is likely to lead to a search
landscape with fairly wide and pronounced maxima around the correct param-
eter values; this can be well detected by a local search technique such as best-
first. Nevertheless, the fact remains that the search-space is very large and high-
dimensional (22 dimensions per human, in our case); this makes “straight-on”
search daunting. The proposed solution to this is search space decomposition.
The decomposed search space ¥* is defined as

Yo = {}521 X ..o X ﬁZM X {piM+1} X X {piN}} (314)

where (i, .., Pi,,) denotes the best solution to searching ¥;. Thus initially a
subset of parameters is searched while keeping the others at their predicted
values. Subsequently, the remaining parameters are searched while keeping the
first parameters at their best value. This search space decomposition can be
applied recursively and can be represented by a tree in which non-leaf nodes
represent search spaces to be further decomposed and leaf nodes are search
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spaces to be actually processed. The proposed recursive pose recovery scheme
of K humans is illustrated in Figure 3.6. In order to search for the pose of the
2-th human in the scene humans 1, ..., ¢+ — 1 are synthesized with the best pose
parameters found earlier, and humans ¢ + 1, ..., K are synthesized with their
predicted pose parameters. The best torso/head configuration of the i-th human
is searched for while keeping the limbs at their predicted values, etc.

In practice, it has been observed that it is more stable to include the torso-
twist parameter in the arms (or legs) search space, instead of in the torso/head
search space. This is because the observed contours of the torso alone are not
very sensitive to twist. Given that the root of the articulated figure is kept fixed
at the torso center, the dimensionalities of the search spaces to be considered
are 5, 9, and 8, respectively.

One could try to increase the parallelism of the search decomposition by
searching different parameter subspaces independently, for example, searching
for each human separately while keeping the other humans at their predicted
pose. Evidently, there are potential coupling effects between the pose parame-
ters of multiple humans due to occlusions. These coupling effects are stronger if
one extends the parallelism to the various body limbs of a single human.

- Initialization

The bootstrapping procedure for tracking currently handles the case where mov-
ing objects (i.e. humans) do not overlap and are positioned against a stationary
background. The procedure starts with background subtraction, followed by a
thresholding operation to determine the region of interest; see Figure 3.7. This
operation can be quite noisy, as shown in the figure. The aim is to determine
from this binary image the major axis of the region of interest; in practice this
is the axis of the prevalent torso-head configuration. Together with the major
axis of another view, this allows the determination of the major 3-D axis of the
torso. Additional constraints regarding the position of the head along the axis
(currently, implemented as a simple histogram technique) allow a fairly precise
estimation of all torso parameters, with the exception of the torso twist and the
limbs parameters, still to be searched for.

The determination of the major axis can be achieved robustly by iteratively
applying a principal component analysis (PCA) [46] on data points sampled from
the region of interest. Let (x;,¢ = 1, ..., N) describe the data points sampled from
the foreground region, denote their mean by p. The best-fitting axis (minimizing
the sum of squared perpendicular distances to the axis) goes through u and its
direction is given by the eigenvector v, ___ associated with the largest eigenvalue
of the data covariance matrix C
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Figure 3.5: (a) Edge and (b) corresponding chamfer image

Figure 3.6: A decomposition of the pose-search space
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C=3 (i p) (i)' (3,15
i=1
At each iteration, the distribution of the distances from data points to the
best-fitting axis is computed. Data points whose distances to the current major
axis are more than the mean plus twice the standard deviation are considered
outliers and removed from the data set. This process results in the removal of
the data points corresponding to the hands if they are located lateral to the
torso, and also of other types of noise. The iterations are halted if the parame-
ters of the major axis vary by less than a user defined fraction from one iteration
to another. In Figure 3.7 the successive approximations to the major axis are

shown by straight lines in increasingly light colors.
- Multi-view approach

By using a multi-view approach we achieve tighter 3-D pose recovery and track-
ing of the human body than from using one view only; body poses and movements
that are ambiguous from one view can be disambiguated from another view. The
appearance of the human model is synthesized for all the available views, and
the appropriateness of a 3-D pose is evaluated based on the similarity measures
for the individual views (see Figure 3.4).

3.5 The other components

The first implementation of the prediction component was in batch mode and
consisted of a constant acceleration model for the pose parameters. In other
words, a second degree polynomial was fitted at times ¢,....t — T" 4+ 1, and its
extrapolated value at time ¢ + 1 was used for prediction. It was found that this
prediction scheme did not necessarily perform better than the trivial strategy of
taking the current state estimate for prediction. This is because the sampling
rate of measurements at frame rate is too low to allow simple kinematic mod-
els to be valid for prolonged periods when dealing with fast movement such as
walking. In some cases, the constant acceleration model performes worse than
the trivial constant parameter model, for example when trying to predict pa-
rameters related to the motion of an swinging arm; the predicted parameters
would have the arm shoot through. The lack of strong kinematic models also
made the application of the Kalman filter for state estimation less appealing.
The situation might be different if more sophisticated kinematic models were to
be formulated, which would model movements such as walking.

The synthesis component uses a standard graphics renderer to give the model
projections for the various camera views.
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The image analysis component applies an edge detector to the images, per-
forms linking, and groups the edges into constant curvature segments. Some
conservative steps are taken to filter out irrelevant edge segments (i.e. which
are not part of the occluding contours of body parts). As an initial step, back-
ground subtraction is applied to obtain a foreground region which is then used
as a mask for the edge segments. Further filtering involves the contours of the
synthesized model; edge segments are accepted if their directed chamfer distance
to the model edges (all combined) is less than a user-specified threshold. This
process facilitates the partial removal of unwanted contours which could disturb
the scene chamfer image.

The next step assigns scene edge pixels to different body units to allow match-
ing per body unit during the decomposed search. The body units are defined
as the torso and head (combined) and the four limbs. The edge assignment is
done in a greedy manner; edge pixels are labeled based on what body unit of
the predicted model is closest; this is determined by accessing the correspond-
ing model chamfer images. In case multiple viable assignments (the distance
ratio between the closest and second closest unit is higher than a user supplied
threshold (< 1), the edge pixels are assigned to both body units. The end result
is that both model and scene edges are labeled and the corresponding cham-
fer images have been computed per body unit. This allows computation of the
undirected chamfer distances, as was discussed in previous section. Observe that
the remaining noise edge pixels, if relative few compared to the data pixels, are
filtered out by the proposed outlier-rejection technique.

3.6 Movement recognition

Movement recognition is considered here in the restricted sense of time-varying
pattern matching. A variant of Dynamic Time Warping (DTW) [66] is discussed
that can deal with unsegmented pattern sequences. Compared to Hidden Markov
Models (HMM) and Neural Networks (NN), DTW is conceptually simple and
quite effective, allowing flexibility in time-alignment between test and reference
pattern to allow correct classification.

For patterns containing time-varying data, Dynamic time warping (DTW)
(see [66] for an overview) is a well-known technique to match a test pattern
with a reference pattern if the time scales are not perfectly aligned. Denote
the test pattern as T(n),n = 1,2,..N, where T(n) is an application-dependent
k-dimensional feature vector. Let R(m),m = 1,2,..M be a reference pattern.
Dynamic time-warping usually assumes that the endpoints of the two patterns
have been accurately located (i.e. segmented) and formulates the problem as
finding the optimal path from point (1,1) to (n,m) on a finite grid. The optimal
path can be found efficiently by dynamic programming. Point (¢,j) on a path
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represents matching the ¢-th feature vector of the reference pattern with the j-th
feature vector of the test pattern.

Since human movements are continuous, one cannot assume that test patterns
have been accurately segmented. Therefore, the DTW method is used at each
time instant ¢ of a test sequence, choosing a sufficiently large fixed time-interval
N to search for the reference pattern "backwards” in time. The test pattern
thus consists of the features derived from time { — N 4+ 1 to . This is similar
to the Continuous Dynamic Programming (CDP) method proposed recently in
[93] with some difference in the cumulative distance computations.

Without any loss of generality, assume the feature values have been nor-
malized i n the [0, 1] range. Define the distance d(z,j) between R(¢) and T(j)

according to the (unweighted) Ly norm:
d(i,j) = |[R(@) = TG, = Z | Ri(i) = Ti(7)] (3.16)

The DTW method involves two stages: a forward stage in which cumulative
distances are computed between test and reference pattern, and a backward
stage in which the optimal path is traced back. The cumulative distance S(¢,7)
between reference pattern R(¢) and test pattern T(j) is given as follows:

Boundary expressions

S(2,0) = oo (l<=i<=M) (3.17)
S(e,1) = 00 2<=i<=M) (3.18)
S(Lj) = jd(1,j) (1 <=j<=N) (3.19)
for 2 <=j <= N:
S(2,5) =ming S(l,j—1)+ 2d(2,j) (3.20)
S(1,7) +d(2,5)

Non-boundary expressions for 3 <=1 <= M, 2 <=j <= N

S(i—1,j =2)+3(d(i,j — 1)+ d(i. j))
S(t,j)=rming Skt—1,y —1)—|—2d(@ 7) (3.21)
S(i=2,j = 1) +3(d(i —1,j) +d(i. j))

After the above expressions have been evaluated, S(N, M) denotes the sum
of he distances between matching feature vectors along the optimal path. By
keeping track of the predecessor on the optimal path at each grid point during the
forward process, one can trace back on the optimal path, starting from (N, M).
Note that the slope of the optimal path is constrained between 1/2 and 2, thus
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N needs to be no larger than 2 M. Let (1, s) be the starting point on the optimal
path to (N, M). The output of the DTW matching algorithm is

S(N, M)

PO ==

(3.22)
which is the average distance between corresponding feature values of test and
reference pattern on the optimal path, with the averaging over the length of the
optimal path (t — s + N) and over the dimensions k.

In practice one may have a set of P (segmented) training patterns of the
same class. A standard clustering approach can be used to divide this set in
K < P groups, based on distance measure D, from which K reference patterns
are chosen. Weighting of the k dimensions in the distance function d(¢,7) can
be based on the variance of feature values of the different patterns of a group,
when warped to the reference pattern (or the "longest” one as in [24]).

The complexity of the DTW matching method is O(N x M). Speed-up can
be achieved by applying the matching method every other ¢* time step, or only
if the N feature vectors describing the test pattern are sufficiently ”close” to
the M feature-vectors describing the reference pattern in k-dimensional space,
discarding the time-component of the data for the moment (see also [18] ).

3.7 Experiments

A large data base was compiled containing multi-view images of human subjects
involved in a variety of activities. These activities are of various degrees of com-
plexity, ranging from single-person hand waving to the challenging two-person
close interaction of the Argentine Tango.

Experimental set-up

The data was taken from four (near-) orthogonal views (FRONT, RIGHT, BACK
and LEFT) with the cameras placed wide apart in the corners of a room for max-
imum coverage; see Figure 3.9. The background is fairly complex; many regions
contain bar-like structures and some regions are highly textured (observe the
two VCR racks in lower-right image of Figure 3.9). The subjects wear tight-
fitting clothes. Their sleeves are of contrasting colors, simplifying edge detection
somewhat in cases where one body part occludes another.

Because of disk space and speed limitations, the more than one hour’s worth
of image data was first stored on (SVHS) video tape. A subset of this data
was digitized (properly aligned by its time code (TC)) and makes up the HIA
database, which currently contains more than 2500 frames in each of the four
views.
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Calibration

The cameras were calibrated in a two-step process. First, the intrinsic camera
parameters were recovered. This was done for each camera separately, placing a
movable planar grid pattern close to each camera in order to calibrate for an as
large field of view (FOV) as posible, see Figure 3.8a. The relative large effective
focal lengths of the lenses used (they turned out to correspond to FOVs of 29.6,
29.2, 29.2 and 32.8 degrees, respectively) allowed a pin-hole approximation for
the viewing geometry throughout the entire experiments with no need to account
for lens distortion. The only intrinsic parameters to be recovered were thus the
effective focal lengths.

The second step involved recovering the extrinsic camera parameters, recov-
ering the orientations and positions of the cameras with respect to each other.
This was done for pairs of cameras (the calibration pattern was not visible from
all cameras simultaneously), see Figure 3.8b. Both intrinsic and extrinsic cal-
ibrations were performed using an iterative, non-linear least squares method
developed by Szeliski and Kang [92].

Calibration does not have to be perfect. Sufficient is an accuracy for which
the image localization errors resulting from calibration are small compared to
those resulting from 3-D body modeling or image processing. To obtain an
indication of the quality of the four-camera calibration in terms of 3-D space,
the positioning of camera BACK was computed with respect to (the opposite)
camera FRONT, along two paths, via camera LEFT and camera RIGHT. The
corresponding transformation matrices are

—0.9812 —0.0517  0.1860 —700.8

- _ (R T)_ [ 00574 09979 —0.0257 4156 | o
Boi=F= 10 1 )| —01842 —0.0360 —0.9822 8170.4 '
0.0000  0.0000  0.0000 1.0
—0.9887 —0.0528  0.1398 —462.8
R T —0.0576  0.9980 —0.0309  442.3
HB—R—F_( o 1 )| 01379 —0.0386 —0.9896 si53.9 | 52
0.0000  0.0000  0.0000 1.0

Define the normalized position deviation A7 between the two transformations
as

~. _ T =T,
Ap =12
1Tl

and define the x-axis deviation Apr, to be the angle between Ry and R, i.e.

(3.25)
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Figure 3.7: Robust major axis estimation using an iterative principal component
fit (cameras FRONT and RIGHT). Successive approximations to the major axis

are shown in lighter colors.
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Figure 3.8: Calibration for (a) intrinsic parameters and (b) extrinsic parameters
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the first column of the rotation matrices R and R'. Then,

Rx'R;(

Apg
| Rx|], R

= cos™!( ) (3.26)

T

el
Define similarly Agr, and Ag_. Then
Ar = 0.029, A, = 2.7 deg, Ap, = 1.0 deg and Ar, = 2.6 deg (3.27)

are indeed close to the desired value of zero.

Another measure of calibration quality considers errors in the image plane
and uses epipolar lines. Given two cameras, (' and Cg, an image point pc, of
camera Cr can be the projection of any 3-D point P lying on the half-line L from
focal point O¢,, through the image plane at location pc,,. The projection of this
half-line onto the image plane of camera (' denotes the possible image locations
of the point corresponding to pc,; this latter half-line is called an epipolar line.
Correct calibration will result in the intersection of the epipolar line with the
projection of P onto the image plane of ', pe.

The epipolar lines drawn in Figure 3.9 in the RIGHT, BACK and LEFT cam-
era views correspond to selected points in the FRONT view. One can see that
corresponding points lie very close to or on top of the epipolar lines. Observe
how all the epipolar lines emanate from one single point in the BACK view: the
FRONT camera center lies within its view.

Implementation

The current system is implemented under A.V.S. (Advanced Visualization Sys-
tem). Following its data flow network model, it consists of independently running
modules, receiving and passing data through their interconnections.

The A.V.S. network implementation of the current system is shown in Figure
3.10; it bears a close resemblance to the pose search cycle shown earlier in Figure
3.4. The parameter space was bounded in each angular dimension by 4+ 15 de-
grees, and in each spatial dimension by + 10 cm around the predicted parameter
values. The discretization was 5 degrees and 5 cm, respectively. These values
were kept constant during tracking.

The individual limb joint angles were also constrained to lie in the ranges
specified by Table 3.7. Additional constraints could be placed on combinations
of joint angles, based on physical considerations such as collision or limitations
of the twist angle in certain poses.

The number of pose search iterations was typically 1100 for each time instant:
200 iterations for the torso, 500 iterations for the torso-twist and arms, and the
remaining 400 iterations for the legs.
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Figure 3.9: Epipolar geometry of cameras FRONT (upper-left), RIGHT (upper-
right), BACK (lower-left) and LEFT (lower-right): epipolar lines are shown

corresponding to the selected points from the view of camera FRONT

min (degrees)

max (degrees)

arm elevation 0 180
abduction -45 180
twist 90 -90

flexion 0 145

leg elevation 0 145

abduction none none

twist none none

flexion 0 145

Table 3.1: Joint angle ranges
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Results

The first thing to be shown is that the followed calibration and human mod-
eling procedures allow accurate 3-D localization of the human in the scene. This
in turn allows the model prediction to be useful for image segmentation dur-
ing tracking. To show this, the pose- parameters of the acquired model were
manually optimized, and the resulting model projections (shown in white) were
superimposed on the four orthogonal views, with the mapping given by the ob-
tained calibration. Figure 3.11 shows the result for two instances; a quite close
fit can be observed between the model projections and the human contours in
the scene.

Next, results are shown regarding the image processing component of the
tracking system. Figure 3.12 shows a typical multi-view image of the Humans-In-
Action database, involving a single participant in motion. The result of applying
edge detection and linking, using a method developed by Sarkar and Boyer [85]
is shown in Figure 3.13. Figure 3.14 shows the effects of masking the edges with
the foreground region, the latter which is obtained by background subtraction.
This is the essentially the input to the pose recovery algorithm, note that the
quality of edges is quite bad. Torso-axis estimation is shown in Figure 3.15.
Figure 3.16 illustrates the edge assignment to various body units; this is done
before starting the decomposed pose search.

Figures 3.17 and 3.18 illustrate tracking for persons DARIU and ELLEN,
respectively. The movement performed can be described as raising the arms
sideways to a 90 degree elevation with a 90 degree flexion, followed by rotating
both elbows forward. Moderate opposite torso movement takes place for balanc-
ing as arms are moved forward and backwards. The current recovered 3-D pose
is illustrated by the projection of the model in the four views, shown in white, as
before. The displayed model projections include for visual purposes the edges at
the intersections of body parts; these were not included in the chamfer matching
process. It can be seen that tracking is quite successful, with a good fit for the
recovered 3-D pose of the model for the four views. Figure 3.19 shows some of
the recovered pose parameters for the DARIU sequence.

Figure 3.20 shows the result of movement recognition using Dynamic Time
Warping (DTW); for the time-interval in which the elbows rotate forward, we
use the left hand pose parameters derived from the ELLEN sequence as a tem-
plate (see Figure 3.20a) and match them with the corresponding parameters of
the DARIU sequence. Matching with DTW allows (limited) time-scale varia-
tions between patterns. The result is given in Figure 3.20b, where the DTW
dissimilarity measure drops to a minimum when the corresponding pose pattern
is detected in the DARIU sequence.

Figure 3.21 illustrates an instance of whole-body tracking of person DARIU
for a movement that can be described as walking and turning. The figures
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show that tracking is successful initially. The current system does lose track,
eventually. Figure 3.21d shows a characteristic failure situation due to incorrect
image segmentation. Here the predicted torso pose (not shown) was somewhat
inaccurate, it partially overlaped the right arm. Due to the greedy edge labeling
scheme employed, a significant amount of arm edges are labeled as the torso
pixels, with the inevitable result that the similarity optimization leads to an
incorrect torso placement.
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animated n-strings

scene view 4 scene view 3 scene view 2 scene view 1

constrain
search
model
ey

geometry viewer geometry viewer geometry viewer geometry viewer
crop crop crop crop
extr_typ_edges extr_typ_edges extr_typ_edges extr_typ_edges
similarity similarity similarity similarity

Figure 3.10: The A.V.S. network implementation of the system.
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Figure 3.11: Manual 3-D model positioning: (a) DARIU (b) ELLEN
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Figure 3.12: Original images
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Figure 3.13: Edge images



Figure 3.14: Foreground edge images
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Figure 3.15: Robust axis fit images
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Figure 3.16: Edge pixel assignment to various body units: (a) all edge pixels,
(b) torso-head, (c) left arm, (d) right arm, (e) left leg, (f) right leg
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Figure 3.17: Tracking sequence D-TwoElbowRot (¢ = 0,10,25), cameras
FRONT, RIGHT, BACK and LEFT.
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Figure 3.18: Tracking sequence E-TwoElbowRot (¢ = 0,10,25), cameras
FRONT, RIGHT, BACK and LEFT.
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Figure 3.19: Recovered 3-D pose parameters vs. frame number, D-TwoEIbRot;
(a) and (b): LEFT and RIGHT ARM, abduction- (x), elevation- (o), twist- (4)
and flexion-angle (*) (c¢): TORSO, abduction- (x), elevation- (o), twist-angle
(4) and x- (dot), y- (dashdot) and z-coordinate (solid). Along the vertical axes,
angles are in degrees, positions are in cm.
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Figure 3.20: (a) A template T for the left arm movement, extracted from E-
TwoElbRot; (b) DTW dissimilarity measure of matching template T with the
LEFT ARM pose parameters of D-TwoElbRot.
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Figure 3.21: Tracking sequence D-TurnWalk (¢ = 0, 5,10, 15), cameras FRONT,
RIGHT, BACK and LEFT.

46



Chapter 4

Hermite deformable contours

Image segmentation by boundary finding is one of the central problems in com-
puter vision. This is because amongst features that can be used to distinguish
objects from their backgrounds, such as color and texture, shape is usually the
most powerful. For detecting instances of objects with fixed and known shape,
the Hough-transform or a template matching technique is well suited (see [84]
[8]). For cases where there exists some flexibility in the object shape (either with
respect to a previous frame in a tracking application, or with respect to a user
supplied shape in an interactive object delineation setting) deformable contour
models have found widespread use.

Deformable contours (also called active contour models, or "snakes”) are
energy-minimizing models for which the minima represent solutions to contour
segmentation problems. They can overcome problems of traditional bottom-up
segmentation methods, such as edge gaps and spurious edges, by the use of an
energy function that contains shape information in addition to terms determined
by image features. The additional shape information can be seen as a regulariza-
tion term in the fitting process. Once placed in image space, the contour deforms
to find the most salient contour in its neighborhood, under the influence of the
generated potential field.

An extensive amount of work has been reported on deformable contours since
their emergence in the late eighties; among others [4], [13]-[27], [32]-[78], [90]-
[98]. A useful way to characterize the different approaches is along the following
dimensions:

e contour representation
e energy formulation (internal and external)
e contour propagation mechanism (spatial and temporal)

The various contour representations that have been used previously are re-
viewed in Section 4.1. A new local representation is proposed for the deformable
contour framework, based on Hermite interpolating cubics, see Section 4.2. Its
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use has several advantages, as will become apparent. The main plus is that it
handles both smooth and polygonal curves naturally.

The solution to the contour finding problem is formulated by a mazimum «
posteriori (MAP) criterion. This leads to an internal energy formulation which
contains squared terms of deviations from the expected Hermite parameter val-
ues. The external energy terms describe the typical image gradient correlations.
See Section 4.3. The resulting energy minimization is performed by dynamic
programming which gives the optimal solution to contour finding for a certain
search region, see Section 4.4.

One of the well-known limitations of deformable contours is that their initial
placement has to be close to the desired object boundary in order to converge. In
tracking applications, this assumption might be violated. To keep the problem
computationally tractable, the effects of transformation and deformation are
decoupled, see Section 4.5.

Experiments on a variety of images are presented in Section 4.6.

4.1 Related work

Contour representations can be roughly divided into two classes, depending on
whether they are global or local. Global representations are those where changes
in one shape parameter affect the entire contour, and conversely, local change
of the contour shape affects all parameters. Global representations are typically
compact, describing shape in terms of only a few parameters. This is an advan-
tage in a recognition context, i.e. when trying to recover these parameters from
images, because of lower complexity. A useful class of shapes easily modeled
by a few global parameters are the super-quadrics [95], which are generaliza-
tions of ellipses that include a degree of ”squareness”. To these shapes, one can
add global deformations, such as tapering, twisting and bending [9]. A more
general global representation is the Fourier representation [90]. It expresses a
parametrized contour in terms of a number of orthonormal (sinusoidal) basis
functions. Arbitrary contours can be represented in any detail desired, given a
sufficient number of basis functions.

Local representations control shape locally by various parameters. This flex-
ibility makes local representations well suited in a shape reconstruction context,
as 1s the case when deforming a contour to fit image data. The simplest con-
tour representation is an ordered list of data points. More compact represen-
tations describe contours in terms of piecewise polynomials. Fach segment of
the parametrized contour (x;(t),y;(t)) is described by a polynomial in ¢. The
lowest-degree interpolating polynomial is of degree one, leading to a contour rep-
resentation by polylines and polygons. More flexibility is possible by the use of
higher order polynomials, generally cubic polynomials; they are the lowest de-
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gree polynomials for which derivatives at the endpoints can be specified. Higher
order polynomials tend to bounce back and forth in less controlable fashion and
therefore are used less frequently for interpolation purposes.

Natural cubic splines are piecewise third degree polynomials which interpo-
late control points with C° C' and C? continuity. The natural cubic spline
parameters depend on all control points, which makes it a global representation.
B-splines on the other hand, have a local representation, where contour segments
depend only on a few neighboring control points. This comes at a price of not
interpolating the control points. The same C°, C' and C? continuity as natural
splines is now achieved at the join points of connecting segments. By replicating
control points, one can force the B-spline to interpolate the control points. A last
interesting property is that the B-spline can be specified such that it performs a
least-squares fit on the available data points.

In previous work, three local representations have been used for deformable
contour finding: point representations, polygonal chains and uniform B-splines.
These representations have the following disadvantages when used for the con-
tour finding task.

Manipulating contours on the fine scale offered by pixel-by-pixel represen-
tations leads typically to high computational cost (for example, note the high
complexity incurred in [32]). The incorporation of a-priori shape information
in this featureless representation is difficult. If, on the other hand, a contour
is represented by a few (feature) points, and contour finding only considers im-
age data in the local neighborhood of these points, no use is made of data at
intermediate locations which makes the approach prone to image noise.

The polygonal chain representation [27] overcomes some of these problems.
However, it is not well suited to represent curved objects well, requiring many
control points to be adequate. In an interactive object delineation setting, this
is tedious. For tracking applications, the placement of control points close to
each other, typical also of point representations, leads to stability problems.
This is because for most contour finding approaches using local representations,
a-priori shape information is encoded for each control point with respect to its
neighboring control points (i.e. curvature [52][78] [98], affine coordinates [57]). If
control points are close together, small deviations due to image noise or contour
propagation will result in large changes of local shape properties.

B-splines present an efficient and natural way to represent smoothly curved
objects. For objects with sharp corners they are less suited; the C'? continuity
smooths out any regions of high curvature of a contour. The fact that B-splines
do not interpolate the control points can be considered a drawback in an interac-
tive object delineation setting (think of a physician pointing to specific locations
in medical images). The before mentioned use of control point duplication can
take care of this, but then straight line segments appear around the newly C°
continuous control point. Without user intervention, when to duplicate control
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points becomes a difficult decision; for example, Menet [64] duplicates control
points in regions where after M steps of contour deformation, the curvature is
higher than a user-supplied threshold 6.

4.2 The Hermite representation

The previous considerations lead us to propose the Hermite representation for
deformable contour finding. Hermite contours are piecewise cubic polynomials,
which interpolate the control points pg,...,pn. In each interval, the Hermite
cubic Q(s,t) = [z(s,t) y(s,1)] is specified by the positions p;j_1, p; and tangent
vectors 7t |, 7 at the endpoints.

Let Q be an arbitrary cubic polynomial

Q=T-C (4.1)
where
Ay ay
T=[Ftt1] C= be by
Cr Gy
d, d,
with tangent vector Q'(t)
Q=T -C=[3t*2t10] - C (4.2)
Given Hermite parameter matrix
H; = [hi hi ] = [pio1 pi 57y i (4.3)

the corresponding Hermite coefficient matrix CHh; can be derived as [30]

9 —2 1 1
-3 3 -2 —1

Cn; = o o 1 ol M
1 0 0 0

The Hermite parameters are collected in state vector H for later use
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When considering the same criteria of usefulness for the contour finding prob-
lem as discussed in previous section for the point-, polygon- and spline-based
representations, one note that the Hermite representation

e can efficiently represent both smooth and sharp contours. This is because
smooth contours are well represented by the Hermite interpolating cubics,
while at the same time, arbitrary sharp corners can be easily generated at
the control points by the adjustment of the left and right tangent vector
parameters

e interpolates the control points

e is explicit in those features that can be measured from image data: position
and direction of gradient at control points. This allows to prune the search
space during contour finding, as we will see in next section.

4.3 MAP formulation

A mazimum a posteriori (MAP) criterion is formulated for the solution of the
contour finding problem. The aim is to find from all possible contours the contour
which matches the image data best, in a probabilistic sense. Let d be the image
to be matched and ty be the image template corresponding to the Hermite
parameters H. Desired is Hyap which maximizes the probability that tg
occurs given d, e.g. P(tuy,,pld). tHy\p
solution to the problem. Bayes rule gives

is then the maximum a posteriori
P( d) = mI%XP(tH|d

)
P(d|tm)
P(d

tHMAP|

(4.5)

_ Pltn)
= max
H )

where P(d|ty) is the conditional probability of the image given the template, and
P(tg) and P(d) are the prior probabilities for template and image, respectively.
Taking the natural logarithm on both sides of eq.(4.5) and discounting P(d),
which does not depend on H, leads to an equivalent problem of maximizing
objective function U

U( d) = mI_EILXU(tH,d)

= mﬁx(lnp(tﬂ) + InP(dltg))

YHypp

(4.6)

The above equation describes the trade-off between a-priori and image-derived
information.
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It the image to be matched is considered as a noise corrupted template with
additive and independent noise that is zero-mean Gaussian, we have P(d|tg) =

P(d|ty +n) = P(n|d — tg), thus

Plltag) = ]I

tH(xvy)

1 _ .yt ()

e 207, (4.7)

2roy,

and

d —t 2
In P(d|ta) = constant + ) (d(z,y) > 2H(:Jz:,y))
g

tH(ac,y) 7

(4.8)

This last term can be replaced by correlation term d-tg, approximating ||d|]|
and ||tg|| by constants. For ||d|| =1 and ||tg|| = 1 we obtain

In P(d|t ~ min (1—d-t = min F,, 4,
max In (d|tm) mﬁn( H) min ¢ (4.9)

A similar derivation was described by Rosenfeld and Kak [84] and Staib and
Duncan [90].

In the above derivation, the data values of d and tg at image location (x,y),
d(x,y) and tg(x,y), were assumed scalar; d(x,y) typically represents an edge
magnitude (as derived by a Sobel operator) and ty(x,y) contains a normalized
value of 1 if image location (x,y) lies on the Hermite contour or 0 if it lies
outside. For the case of non-scalar data types (e.g. d(z,y) and tg(x,y) represent
the image intensity gradient and the contour normal, respectively) one needs to
adapt the noise model of Equation 4.7.

The prior probability for a Hermite contour H is modeled as

_ (H-Hiy’

P(H) = P(HH) = constant -] e 20} (4.10)
where H represents an expected contour. H is typically obtained as the sample
mean of contours generated in a training phase, or as the contour obtained
by prediction during tracking. o; acts as a weighing measure for the various
dimensions. In case of an open contour, we set the o’s of 7,7 and 7% to a non-
value.

In tracking applications the contour typically undergoes a transformation T
(for example, translation, rotation and scale) for which one does not want to
penalize. The above modeling assumes that any transformation on the contour
which one does not want to penalize has already been performed, before eq.(4.10)
is applied. Any further contour change is considered as deformation from an
expected contour and thus penalized.

Taking the natural logarithm gives

: (
max InP(tg) = min ZZ: 5o
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4.4 Optimization
There are many ways to solve the resulting minimization problem

Hﬂn JO— Hﬂn (Bint + Eext). (4.12)
Variational calculus methods have been used extensively for continuous parame-
ter spaces where derivative information is available [20] [52] [64] [78] [90] [95]. For
discrete search spaces one possibility is to use A.lL search techniques. A discrete
enumeration technique based on dynamic programming (DP) is used here which
was popularized by Amini et al. [4], and used since by [32] [57]. The advantages
of dynamic programming with respect to variational calculus methods are in
terms of stability, optimality and the possibility to enforce hard constraints [4].
For dynamic programming to be efficient compared to the exhaustive enumera-
tion of the possible solutions, the decision process should be Markovian. This is
typically the case if the a priori-shape component F;,; contains a summation of
terms which only depend on parameters which can be derived locally along the
contour.
For the case of open contours, our objective function can be written as

E = FEipo,7¢,7{,P1) + ... +
EN(pN—lle-I\}_lleszpN) (413)

Applying the dynamic programming technique to our formulation involves
generating a sequence of functions of two variables, s; with: = 0..N — 1, where
for each s; a minimization is performed is over two dimensions. s; are the optimal
value functions defined by

SO(Tl_vpl) = ;ﬂlr_ll_ El(p07T(3|_771_7p1)
07
si(Tiy1 Piv1) = gliﬁ(si—ﬂpiv )+
13

Ei(pivTi—l—vTi;lvpi-I-l) )
t = 1. N—-1 (4.14)

If p; and 77 (1) range over Np and Ny values at each index ¢, the complexity
of the proposed algorithm is O(N N3 N3).

The above formulation is for open contours. For closed contours, where the
first and last control point are defined equal, we apply the same algorithm as
for the open contour case, yet repeat it for all Np possible locations of the first
(last) control point, while keeping track of the best solution. The complexity
increases to O(N N} N3).
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Speed-up can be achieved by a multi-scale approach. Here contour finding
is first done on a lower resolution image to find an approximated contour. This
can be done with a coarse discretization of the parameter space (i.e. requiring
smaller Np and Np for the same parameter range). At the finer level, the
originally desired discretization can be achieved by decreasing the parameter
range to lie around the solution found at the coarse level.

At the same scale, the algorithm can be sped up by discounting unprobable
control point locations before starting the DP search. A measure of “unproba-
bility” can be specified in terms of weak image gradient strength or dot product
between measured and expected gradient directions (the latter are explicit in the
Hermite representation). If all the candidate control point locations are rated
similarly (e.g. standard deviation of ratings below a threshold), it is more robust
to consider all.

In addition, for closed contours, one can use only a single pass DP for closed
contour and to optimize for the remaining Eo(pN. 75, 7o » Po) while assigning to
po and pyn the optimal values found for the open contour case. Of course, all
these speed-up procedures loose the optimality property of DP. Nevertheless, the
last two methods which were implemented performed satisfactory in practice.

4.5 Tracking

The high computational cost of dynamic programming, and of other search meth-
ods which do not get stuck in the closest local minimum, makes search only fea-
sible in a limited neighborhood. For interactive contour delineation this is fine,
since the user is likely to place well-positioned control points, very close to the
desired contour. In tracking applications this requirement is often unrealistic.
On the other hand, it is our observation that the effects of deformation are often
small from frame to frame once rigid motion is accounted for.

The effects of motion and deformation on the contour are therefore decou-
pled, first, transformation parameters T' = [t, @, s] are searched for, with t, ¢
and s denoting translation, rotation and scaling. T'is found with respect to the
undeformed contour, after which search continues for the deformation param-
eters. The first stage is robustly performed by template matching (or Hough
Transform [57]) on a Gaussian-blurred gradient image.

The second stage is the DP approach described earlier. Both stages use
motion prediction methods; template matching at time ¢ + 1 searches in a pa-
rameter range centered around predicted transformation T(#+ 1) using predicted
template ﬁ(t +1). ﬁ(t + 1) is also the initial contour of DP search.

For simplicity, currently T'(¢ + 1) = T'(t) and H(¢ + 1) = H(t) is used. More
general, T(t + 1) = p(t + 1) where p is a best fitting n-th order polynomial
at (t-M, T(t-M)) ..., (t-1, t). Similar consideration holds for H(t + 1). If the
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time-span M in which a n-th order model holds is large it is efficient to use a
recursive predictor such as the Kalman filter.

4.6 Experiments

Several experiments have been performed with the proposed combination of Her-
mite representation and template-plus-DP search in both interactive as tracking
settings. The associated template matching parameters were range and dis-
cretization of the transformation parameters (translation, rotation and scale).
DP-related parameters included the initial values of the Hermite parameters,
their range and discretization, as well as the weighing parameters. The loca-
tions considered around control point p; lied on a rectangular grid with x-axis
perpendicular to pjy1 — pj_1. The Hermite gradients 73 were described in terms
of length /; and direction ¢;. Typically, N = 5, Np =9 (Np = 4 after pruning),
Ny =3, N, =09.

Figure 4.1 demonstrates versatility of the Hermite representation. Different
initial contours are placed by the user as shown in Figure 4.1a. Figure 4.1b
shows the search region covered by DP for the initial control point placement;
for each contour segment the Hermite cubics are shown corresponding to (¢;,,... .,
Bit1man) and (s . &it1,.., ) for fixed (initial) control point locations and [ =
liaz- Many different Hermite contours which lie within this search region are not
displayed. Figure 4.1c shows the result of contour finding by DP. One observes
a wide variety of shapes that have been accurately described by the Hermite
representations, from the smoothly varying contour of the mug rim to the sharp
corners of the square pattern, with a curved horizontal segment joining at the
corner. It compares favorably with a possible representation by polygonal chains,
splines or Fourier descriptors.

For completeness, we also show in Figure 4.1d the conditioned Sobel gradient
image, which is used by the DP algorithm. A conditioned image is used instead
of the original Sobel image in order to amplify weak but probable edges. This
is done based on local considerations, taking into account mean g and standard
deviation ¢ in a n X n neighborhood. A linear remapping is applied on the image
data at (x,y) if o is greater than a user specified threshold.

Figure 4.2 shows different instances of initial placement and contour detec-
tions on a MR image of the human brain. Figure 4.3 shows a tracking sequence
of a head using the proposed combination of coarse-scale template matching
and DP. Finally, Figure 4.4 shows a sequence where different face features are
tracked. Here the measure of fit between Hermite contour and image was based
on greyscale statistics (mean and variance) along the inside and outside bound-
aries of contour segments.
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Figure 4.1: Mug image (a) contour initialization (b) search region (c) contour
detection (d) conditioned Sobel image
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(a) (b)

Figure 4.2: Brain MR image (a) contour initialization (b) contour detection

Figure 4.3: A head tracking sequence (t = 0, 8, 24, 30)
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Figure 4.4: A face tracking sequence (t = 0, 20, 60, 120)

38



Chapter 5

Towards 3-D head model acquisition

The acquisition of accurate 3-D textured head-models from images is impor-
tant for many applications such as computer animation, virtual reality, video
resolution enhancement and low bit-rate image coding [2]. For example, many
successful movies have come to rely on high precision scanned 3-D (head) models
of actors for their special-effects; twisting, bending and morphing an actor’s ap-
pearance to the degree desired. Some TV commercials have followed suit, most
notably leading to toddlers “breakdancing” and basketball teams consisting of
replicated star-players.

Apart from these and similar applications which require very accurate 3-D
head models and which can afford acquisition in controlled environments (by
active sensing) and costly equipment, the arrival of cheap single-camera systems
on top of PCs and workstations is likely to facilitate a 3-D head model acquisition
ability from monocular images for the general public. Although less accurate
than systems based on structured light or passive stereo, such monocular systems
could provide sufficient realistic models to allow face animation, for example as
part of a "personalized” human-computer interface, including speech. In this
setting, one can reasonably assume a degree of user cooperation in obtaining
his or her 3-D head model. This can range from the desirable none to some
light form of scripting, where the user has to perform a pre-determined head
movement (for example, starting in a frontal view and turning side-ways), and
even to requiring some assistance in the image processing part (for example in
resetting features when they get lost during tracking).

In this chapter, the head-model estimation problem is examined in the above
single-camera-on-desk setting, with the scope initially restricted to the case of
a rigid (but unknown) head shape. The main features of the followed approach
are the integration of motion and structure estimates over time in the recursive
framework of the Kalman-filter [15] and the use of occluding contours to incre-
mentally obtain a more accurate head shape. The use of a recursive framework
facilitates a real-time implementation, although this was not pursued here.

The outline of this chapter is as follows. Section 5.1 provides an overview of
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related work. Section 5.2 discusses a Kalman filter implementation for motion
and structure recovery following Azarbayejani and Pentland [5]. Section 5.3
contains the initial approach to the problem followed by the obtained results, in
Section 5.4.

5.1 Related Work

Active sensing techniques allow very precise 3-D shape recovery. Structured
(visible or infrared) light is used to illuminate parts of the object distinctively
with a line or dot pattern. Using properly calibrated sensors from two or more
viewpoints, one can easily find point correspondences between the views and
recover 3-D shape by triangulation; this involves placing the object or sensors
on a motion platform with known motion for full surface coverage. There are
several commercial products based on this method, for example by Cyberware.

A number of researchers have considered passive stereo techniques, where no
special lighting is required. Koch [55] describes a method where camera motion
is estimated by regularized optical flow; the recovered motion is used to fuse
successive depth maps together. Akimoto et al use only frontal and profile views
of heads to warp a generic 3-D model. Some simplifying assumptions are made,
among others that two cameras are placed in precise orthogonal configuration
with horizontal and aligned epipolar geometry.

Another related line of research has dealt with the general problem of re-
covering shape from occluding contours assuming either known motion [105],
controlled motion [23] (object placed on turntable), or the use of multiple cam-
eras [47]. Various ways are proposed to deal with the "aperture problem”.

For the monocular case, most work on 3-D head models has concentrated
on tracking with a known and fixed model, initialized with various degrees of
user assistance in a frontal view [11], [54] [96]. Some have extended the model
with non-rigid deformations as controlled by known Action Units to account
for facial expressions [16], [539]. Motion estimation has been achieved by either
optical flow or by a generate- and-test strategy. Because of the reliance on a
fixed model fitted to the frontal view, these methods encounter difficulties when
dealing with significant head rotations.

There has been little work done on the simultaneous estimation of both shape
and head motion. Some ideas have been proposed in [14], [12] and [54], which
entail updating the mesh structure after the overall rigid head motion has been
estimated by optical flow. Many questions remain in terms of the computational
cost and robustness of the resulting algorithms. Recently, some interesting work
by DeCarlo and Metaxas [26] has dealt with the incorporation of optical flow in
a deformable model framework.
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5.2 Motion and structure estimation

This work relies on the extended Kalman Filter (EKF) to estimate motion and
structure recursively. The use of temporal information, in the form of feature
tracks combined with a motion model, makes the approach less prone to error ac-
cumulation than some of the successive two-frame motion estimation approaches
mentioned earlier. The EKF formulation developed by Azarbayejani and Pent-
land [5] is used, which is summarized below.

The camera model is the pinhole model

() =03 o 61

where (X¢, Yo, Z¢) is the location of a 3-D point in the camera reference frame,
(u,v) is the image location and # = 1/f is the inverse focal length, the latter
which can be estimated. 3-D feature location is expressed in terms of image
location (u,v) and unknown depth «

X u u
Y |=| v | +al| vf (5.2)
VA 0 1

Pointwise structure is described with one parameter per point. Under the as-
sumption of zero-mean noise on the image locations, it was shown [5] that fea-
tures effectively only have one degree of freedom in 3-D space. Even when mea-
surement biases exists, most uncertainty remains along the depth dimension,
justifying the structure parametrization (aq,...,ay) for N features. Restrict-
ing the otherwise 3N dimensional parameter space to N dimensions increases
stability of the filter.

Translation is estimated by (tx,ty,tz/). Image locations are related to cam-
era, structure and motion parameters by eq.5.1 and

Xeo 1 X
vo |=| 1 |R|Y (5.3)
Zc &} Z

The 3-D rotation is defined as the rotation of the object reference frame rel-
ative to the camera reference frame. Interframe rotation is expressed in Euler
angles (wx,wy,wyz) centered around zero, which is combined with an external
quaternion representation (qo, ¢1, g2, ¢3) to maintain an estimate of global rota-
tion.

The state vector used in the Kalman filter consists of N + 7 parameters, 6
for motion, 1 for camera geometry and N for structure

X:(thtY7t267wX7vawzvﬂvalv"'7aN) (54)

61



The state model in the EKF has been chosen trivially as identity plus noise,
assuming no a-priori information about system dynamics. The measurement
equation is given by combining Equations 5.1, 5.3 and 5.2. The RHS (u,v) in
eq.5.2 defines the image location of the feature in the initial frame, and the
LHS (u,v) in eq.5.1 represents the measurement. The issue of scale is resolved
by fixing the depth « of a point throughout the sequence. This is achieved by
setting its initial variance to zero.

5.3 Head model acquisition

The initialization procedure consists of warping a generic 3-D head model to a
frontal view of a head. Fitting requires locating facial features in the image and
computing their XY coordinates in 3-D space by back-projection onto a plane of
constant depth Z = Z,, the distance from the camera to the center of the head;
this determines the scale of the model. The corresponding XY vertex coordinates
of the generic head model are mapped onto these. To interpolate non-feature
model vertices, an identical triangulation is defined on the XY coordinates of
both the model and image features; non-feature vertices in a particular “model”
triangle are mapped onto the corresponding ”image” triangle using bi-linear
interpolation. In absence of more detailed information about depth, a constant
scale factor is applied to the 7 axis to warp the model. This scale factor is set
equal to the XY distance ratio between two features in the original and warped
model (i.e. the eyes). The head is centered at depth Z.

As a first attempt to obtain 3-D head data from image sequences, we run the
Kalman filter to obtain motion estimates which are used to animate the warped
generic model. At each iteration, image points on the outline of the head are
back-projected and it is determined where the corresponding rays come closest
to the vertices on the occluding contour of the animated 3-D model; these points
are called "attachment” points. These attachment points are transformed and
collected in an object-centered coordinate system for further processing.

5.4 Experiments

Figure 5.1 shows the generic and the fitted 3-D head model. The feature points
for the model-warping were the eyes, nostrils, mouth, chin, top and sides of the
head. Their location was determined interactively. Figure 5.1¢ shows the result
of texture mapping the model of Figure 5.1b. The model-warping gives fairly
realistic results for the eye-nose-mouth area for large rotations, however, cheek
and hair regions are poorly represented.

An image sequence is considered of a face turning from a left to a right profile
view. No assumption is made about the motion performed as the Kalman filter
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is applied. The features correspond to left/right corners of eyes and mouth,
nostrils, and skin marks; they were tracked manually for the moment. Figure
5.6ab shows the used features in the frontal view and the remaining visible ones
in the right profile view. A noisy sequence was also generated by adding uniform
noise of +3 pixels to the feature tracks (the image size is 760 x 484). Parameter /3
was computed from the camera and lens specifications and not estimated. The
structure and motion estimates of the Kalman filter are given in Figures 5.2,
5.3, 5.4 and 5.5, for unperturbed (An = 0) and perturbed input (An = 3). The
depth of one of the eye corners was fixed at Z = 126 cm, which was the depth of
the corresponding vertex in the warped model after placing it at Z = Zy = 130
cm. The two features close to the ears were initialized at Z = 130 cm, all others
were initialized at 7 = 125 cm. Figure 5.2 shows structure converges within
15 frames for the unperturbed data, somewhat longer for the perturbed case.
The addition of noise does not have a major impact on the motion estimates
as can been seen in Figures 5.3 and 5.4. Figure 5.5 shows a good performance
of the Kalman filter for the unperturbed case; the error between the measured
and estimated image locations is overall less than 0.4 % of the image extent, i.e.
less than 3 pixels. FEvidently, this error increases with perturbed data, partly
because the measurements are noisy themselves.

Figure 5.7 shows the attachment points connected in a mesh, as it "wraps
around” the head, for the perturbed case. The attachment points for the unper-
turbed case are shown in Figure 5.8. A fairly close fit can be observed.
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Figure 5.1: (a) Generic 3-D head model, (b) fitted model, (c) texture-mapped
model
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Figure 5.2: Kalman filter structure estimates (o; in ¢cm) vs. frame number: (a)
noise An = 0 pixels, and (b) noise An = 3 pixels.
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Figure 5.3: Kalman filter translation estimates (tx, ty and fz in cm) vs. frame
number: no noise added (dotted) vs. uniform noise (43 pixels) added (solid).
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Figure 5.4: Kalman filter rotation estimates (unit quaternions) vs. frame num-
ber: no noise added (dotted) vs. uniform noise (43 pixels) added (solid).
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Figure 5.5: Residual errors of feature location (in fractions of image plane size):
(a) noise An = 0 pixels, and (b) noise An = 3 pixels.
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Figure 5.6: The features in the frontal view (a) and in the profile view (b)
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Figure 5.8: 3-D head point data from contours (unperturbed input)
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Chapter 6

Conclusions and future work

6.1 Summary

This thesis has presented a system for vision-based 3-D tracking of unconstrained
whole-body movement without the use of markers. The 3-D recovery approach
was motivated by two considerations, to obtain a more meaningful feature set
for action recognition and to obtain 3-D data for applications such as virtual
reality. Pose-recovery was formulated as a search problem and entailed finding
the pose parameters of a graphical human model whose synthesized appearance
is most similar to the actual appearance of the real human in the multi-view
images. The models used for this purpose were acquired from the images semi-
automatically. A decomposition approach and a best-first technique was used
to search through the high dimensional pose parameter space. A robust variant
of chamfer matching was used as a fast and well-behaved similarity measure
between synthesized and real edge images. A variant of Dynamic Time Warping
was introduced to allow the matching of unsegmented movement patterns.

A large Humans-In-Action database has been compiled which contains multi-
view images of human subjects involved in a variety of activities. The results
obtained in this thesis demonstrate, for the first time, successtul 3-D tracking of
unconstrained whole-body movement on real images. In particular, the following
two conclusions can be drawn from the experimental results. First, the calibra-
tion and human modeling procedures support a (perhaps surprisingly) good 3-D
localization of the model such that its projection matches the all-around camera
views. This is good news for the feasibility of any multi-view 3-D model-based
tracking method, not just for the proposed one. Second, the proposed pose re-
covery and tracking method based on, among others, the chamfer distance as
similarity measure, is indeed able to maintain a good fit over time.

This thesis has also introduced Hermite deformable contours to improve on 2-
D edge segmentation by using shape prediction. Their representation was shown
to have advantages over point-, polygonal- and spline-based representations in
terms of versatility, stability and controlability. A decoupled approach to contour
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tracking was proposed based on template matching on a coarse scale to account
for motion effects, and dynamic programming on a finer scale to account for the
deformation effects. These ideas were demonstrated on images from a variety of
domains.

Finally, first steps have been made towards the recursive 3-D head model ac-
quisition from monocular head-shoulder images. The motion estimate obtained
by a Kalman filter and a generic 3-D head model fitted to a frontal view were
used to obtain rough 3-D head shape from a sequence of occluding head contours.

6.2 Future work

There are many ways to extend the current work on 3-D body tracking. An
important area for improvement is image segmentation. The approach taken
in this thesis has been to restrict work in 2-D to a minimum and place all the
burden on a combinatoric 3-D search in order to demonstrate the feasibility of 3-
D model-based tracking. More emphasis on image segmentation is likely to result
in higher algorithm efficiency by a restriction of the relevant search space, similar
to the ideas of O’Rourke and Badler [71]. For example, pose search restrictions
could be derived from the detection of the medial axes of limbs or the detection
of skin-colored regions like the hand and the face. Further reductions of the
search space could be achieved by triangulation on these features. The resulting
approach would place the here proposed pose recovery methods more in the
context of pose verification. At the same time, further work on 2-D labeling of
body parts is needed to allow the tracking system to bootstrap (or to recover)
from a wider variety of poses. The robustness of pose recovery can be increased
if contour features are first labeled before brought into correspondence. The
incorporation of Hermite deformable contours in the system would allow better
edge segmentation and also provide temporal cues. Furthermore, region-based
features (e.g. color) are likely to be useful to complement the current edge-based
approach.

Another area of improvement is the use of more sophisticated human models
(e.g. flexible torso) which include some notions about dynamics (e.g. support).
Their automatic acquisition from images containing human movement also needs
to be addressed. Further improvement deals with reasoning about occlusion and
knowing when to initiate or stop tracking of body parts.

Finally, it would be interesting to develop a symbolic component on top
of the tracking component which would allow reasoning on a semantic level
about what human movement is observed in the scene. This would involve
defining and recognizing generic movement primitives (e.g. “extending hand”)
or poses (e.g. “holding object”), placing the events into a database together
with previous knowledge, and allowing inferences by user-supplied rules. The
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symbolic component might also formulate the vision tasks to be executed, for
example, changing the mode of tracking from a fine-scale (with each body part
tracked) to a coarse scale (with human body considered as a whole) and vice
versa, depending on context.

It is expected that with these improvements, 3-D based vision systems will
have greatly improved capabilities to deal with complex human movement suc-
cessfully. This might include analyzing the Argentine Tango, see Figure 6.1.

i

Figure 6.1: “Manual” 3-D pose recovery for a pair dancing the Argentine Tango

(cameras FRONT, RIGHT, BACK and LEFT)
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